Structural Parameterizations with Modulator Oblivion

It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most $k$ vertices whose deletion results in a chordal graph, when parameterized by $k$. While this investigation fits naturally into the recent trend of what are called `structural parameterizations', here we assume that the deletion set is not given. One method to solve them is to compute a $k$-sized or an approximate ($f(k)$ sized, for a function $f$) chordal vertex deletion set and then use the structural properties of the graph to design an algorithm. This method leads to at least $k^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ running time when we use the known parameterized or approximation algorithms for finding a $k$-sized chordal deletion set on an $n$ vertex graph. In this work, we design $2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ time algorithms for these problems. Our algorithms do not compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a tree decomposition of the given graph in time $2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ where each bag is a union of four cliques and $\mathcal{O}(k)$ vertices. We then apply standard dynamic programming algorithms over this special tree decomposition. This special tree decomposition can be of independent interest. Our algorithms are adaptive (robust) in the sense that given an integer $k$, they detect whether the graph has a chordal vertex deletion set of size at most $k$ or output the special tree decomposition and solve the problem. We also show lower bounds for the problems we deal with under the Strong Exponential Time Hypothesis (SETH).

[1]  Venkatesh Raman,et al.  Structural Parameterizations of Undirected Feedback Vertex Set: FPT Algorithms and Kernelization , 2018, Algorithmica.

[2]  岩田 陽一,et al.  0/1/all CSPs, Half-Integral A-path Packing, and Linear-Time FPT Algorithms , 2018 .

[3]  Yixin Cao,et al.  Chordal Editing is Fixed-Parameter Tractable , 2014, Algorithmica.

[4]  Yoshio Okamoto,et al.  On Problems as Hard as CNF-SAT , 2011, 2012 IEEE 27th Conference on Computational Complexity.

[5]  Michal Pilipczuk,et al.  On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.

[6]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[7]  Pim van 't Hof,et al.  Parameterized complexity of vertex deletion into perfect graph classes , 2011, Theor. Comput. Sci..

[8]  Eun Jung Kim,et al.  Erdős-Pósa property of chordless cycles and its applications , 2018, SODA.

[9]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[10]  Saket Saurabh,et al.  Polylogarithmic Approximation Algorithms for Weighted-ℱ-deletion Problems , 2020, ACM Trans. Algorithms.

[11]  Mathieu Liedloff,et al.  Beyond Classes of Graphs with “Few” Minimal Separators: FPT Results Through Potential Maximal Cliques , 2018, Algorithmica.

[12]  Saket Saurabh,et al.  Faster Parameterized Algorithms Using Linear Programming , 2012, ACM Trans. Algorithms.

[13]  Michel Habib,et al.  A simple linear time algorithm for cograph recognition , 2005, Discret. Appl. Math..

[14]  Saket Saurabh,et al.  Polylogarithmic Approximation Algorithms for Weighted-ℱ-deletion Problems , 2017, APPROX-RANDOM.

[15]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[16]  M. P. J. Bart,et al.  Parameter ecology for Feedback Vertex Set , 2014 .

[17]  Michael R. Fellows,et al.  Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity , 2013, Eur. J. Comb..

[18]  Fedor V. Fomin,et al.  Large Induced Subgraphs via Triangulations and CMSO , 2013, SIAM J. Comput..

[19]  Jean Fonlupt,et al.  The complexity of generalized clique covering , 1989, Discret. Appl. Math..

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  Stefan Kratsch,et al.  Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth , 2013, Inf. Comput..

[22]  Kellogg S. Booth,et al.  Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..

[23]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[24]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[25]  Saket Saurabh,et al.  Polynomial Kernels for Vertex Cover Parameterized by Small Degree Modulators , 2018, Theory of Computing Systems.

[26]  Andreas Brandstädt,et al.  On Robust Algorithms for the Maximum Weight Stable Set Problem , 2001, FCT.

[27]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[28]  Fahad Panolan,et al.  Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree , 2015, ICALP.

[29]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[30]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[31]  Frank Harary,et al.  Graph Theory , 2016 .

[32]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[33]  Michael R. Fellows,et al.  The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number , 2007, Theory of Computing Systems.

[34]  Hans L. Bodlaender,et al.  Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.

[35]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[36]  Marcin Pilipczuk,et al.  Approximation and Kernelization for Chordal Vertex Deletion , 2016, SODA.

[37]  Jeremy P. Spinrad,et al.  Robust algorithms for restricted domains , 2001, SODA '01.