Probabilistic methods for the analysis of metal-matrix composites

Abstract A probabilistic micromechanics-based non-linear analysis procedure is developed to predict and quantify the variability in the properties of high-temperature metal-matrix composites. Monte Carlo methods and assumed probabilistic distributions of the constituent level properties including fiber, matrix, and interphase properties, volume and void ratios, strengths, fiber misalignment, and non-linear empirical parameters are used to predict the resultant ply properties and quantify their statistical scatter. Graphite/copper and silicon-carbon/titanium-aluminide (SCS-6 T115) unidirectional plies are considered to demonstrate the predictive capabilities. The non-linear material response of continuous-fiber-reinforced metal-matrix composite structures has also been studied by using the macroscopic elastoplasticity theory and a continuum shell element. The procedures discussed have a high potential for use in material characterization and selection (to precede and assist in experimental studies) and determination of the structural response of new high-temperature metal-matrix composites.

[1]  J. F. Doyle,et al.  Elastic-Plastic Analysis of Boron/Aluminum Composite Under Constrained Plasticity Conditions , 1987 .

[2]  Jan Drewes Achenbach,et al.  Continuum Theory for a Laminated Medium , 1968 .

[3]  Shigeru Nakagiri,et al.  Uncertain Eigenvalue Analysis of Composite Laminated Plates by the Stochastic Finite Element Method , 1987 .

[4]  A Theory Of Elasticity With Microstructure For Directionally Reinforced Composites , 1976 .

[5]  G. J. Dvorak,et al.  Generalized Initial Yield Surfaces for Unidirectional Composites , 1974 .

[6]  S. Utku,et al.  Finite element analysis of elastic-plastic fibrous composite structures , 1981 .

[7]  Jacob Aboudi,et al.  A continuum theory for fiber-reinforced elastic-viscoplastic composites , 1982 .

[8]  Jacob Aboudi,et al.  Constitutive equations for elastoplastic composites with imperfect bonding , 1988 .

[9]  George J. Dvorak,et al.  Thermal Stresses in Heat-Treated Fibrous Composites , 1976 .

[10]  G. Dvorak,et al.  Plasticity Analysis of Laminated Composite Plates , 1982 .

[11]  Christos C. Chamis,et al.  A Unique Set of Micromechanics Equations for High-Temperature Metal Matrix Composites , 1988 .

[12]  George J. Dvorak,et al.  Bounds on overall instantaneous properties of elastic-plastic composites , 1988 .

[13]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[14]  M. S. Madhava Rao,et al.  Yielding in Unidirectional Composites Under External Loads and Temperature Changes* , 1973 .

[15]  George J. Dvorak,et al.  Elastic-plastic behavior of fibrous composites , 1979 .

[16]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[17]  Jacob Aboudi,et al.  Closed form constitutive equations for metal matrix composites , 1987 .

[18]  C. Sun,et al.  Effect of Plasticity on Free Edge Stresses in Boron-Aluminum Composite Laminates , 1987 .

[19]  Jacob Aboudi,et al.  Damage in composites—Modeling of imperfect bonding , 1987 .

[20]  J. C. Simo,et al.  A return mapping algorithm for plane stress elastoplasticity , 1986 .

[21]  Christos C. Chamis,et al.  Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites , 1988 .

[22]  Jacob Aboudi,et al.  The effective moduli of short-fiber composites , 1983 .

[23]  J. N. Reddy,et al.  A Unified Formulation of Micromechanics Models of Fiber-Reinforced Composites , 1991 .

[24]  J. Reddy,et al.  Analysis of metal-matrix composite structures—I. Micromechanics constitutive theory , 1991 .

[25]  J. N. Reddy,et al.  Continuum-based stiffened composite shell element for geometrically nonlinear analysis , 1989 .

[26]  J. N. Reddy,et al.  Analysis of laminated composite shells using a degenerated 3‐D element , 1984 .

[27]  G. Dvorak,et al.  Axisymmetric plasticity theory of fibrous composites , 1976 .

[28]  Jacob Aboudi,et al.  Elastoplasticity theory for composite materials , 1986 .

[29]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.