On the use of niching genetic algorithms for variable selection in solar radiation estimation

Prediction of climatic variables, in particular those related to wind and solar radiation, has developed a huge interest in recent years, mainly due to its applications to renewable energy. In many cases there is a large number of factors that influence the climatic variable of interest, and the researcher chooses the most relevant ones (based on previous knowledge of the region, availability, etc.) and runs a series of experiments combining the available data in order to find the combination that provides the best prediction.

[1]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[2]  Mónica Bocco,et al.  Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina , 2006 .

[3]  Wenxian Lin,et al.  Correlations for estimating monthly average global and diffuse solar radiation on horizontal surfaces at Tengchong, China , 1999 .

[4]  Stefano Tarantola,et al.  Global Sensitivity Analysis: An Introduction , 2005 .

[5]  M. Bilgili,et al.  Application of artificial neural networks for the wind speed prediction of target station using reference stations data , 2007 .

[6]  Poonam Garg,et al.  A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm , 2010, ArXiv.

[7]  Mohamed Mohandes,et al.  USE OF RADIAL BASIS FUNCTIONS FOR ESTIMATING MONTHLY MEAN DAILY SOLAR RADIATION , 2000 .

[8]  Ole J Mengshoel,et al.  The Crowding Approach to Niching in Genetic Algorithms , 2008, Evolutionary Computation.

[9]  Christina Marie Moulton,et al.  Hierarchical Clustering of Evolutionary Multiobjective Programming Results to Inform Land Use Planning , 2008 .

[10]  Bo Yuan Deterministic crowding, recombination and self-similarity , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[11]  I. Calvo,et al.  Aproximaciones neuronales para la modelización del crecimiento diario del alcornoque (Quercus suber L.) en una dehesa del suroeste de España (Hinojos, Huelva) , 2007 .

[12]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[13]  Mónica Bocco,et al.  Comparison of Regression and Neural Networks Models to Estimate Solar Radiation , 2010 .

[14]  S. Rehman,et al.  Artificial neural network estimation of global solar radiation using air temperature and relative humidity , 2008 .

[15]  Kalyanmoy Deb,et al.  Comparison of multi-modal optimization algorithms based on evolutionary algorithms , 2006, GECCO.

[16]  Saleh M. Al-Alawi,et al.  An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation , 1998 .

[17]  Larry C. Purcell,et al.  Evaluation of Solar Radiation Prediction Models in North America , 2004 .

[18]  Andrew Kusiak,et al.  Estimation of wind speed: A data-driven approach , 2010 .

[19]  Mónica Bocco,et al.  Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina , 2013 .

[20]  Peter Filzmoser,et al.  Introduction to Multivariate Statistical Analysis in Chemometrics , 2009 .

[21]  Yu Zhang,et al.  Prediction of solar radiation with genetic approach combing multi-model framework , 2014 .

[22]  José María Baldasano,et al.  Solar Radiation Mapping from NOAA AVHRR Data in Catalonia, Spain , 2001 .

[23]  C. F. Ratto,et al.  Solar irradiance estimation from geostationary satellite data: I. Statistical models☆ , 1993 .

[24]  Wu Ji,et al.  Solar radiation prediction using statistical approaches , 2009, 2009 7th International Conference on Information, Communications and Signal Processing (ICICS).

[25]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[26]  Alfredo Braham,et al.  Disminución de los tiempos de entrenamiento en redes neuronales artificiales aplicadas a hidrología , 2003 .