Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

Abstract Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (∼200 mAh g−1) and good energy densities (>700 Wh kgoxide−1) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

[1]  M. Thackeray,et al.  Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries , 1992 .

[2]  M. Balasubramanian,et al.  Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures , 2011 .

[3]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[4]  J. Croy,et al.  Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries , 2015 .

[5]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[6]  Joel D. Blauwkamp,et al.  Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells. , 2016, ACS applied materials & interfaces.

[7]  Y. Meng,et al.  Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries , 2016 .

[8]  Gerbrand Ceder,et al.  Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries , 2014, Science.

[9]  Michael M. Thackeray,et al.  Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C , 1992 .

[10]  Brandon R. Long,et al.  Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. , 2015, Journal of the American Chemical Society.

[11]  Kevin G. Gallagher,et al.  Quantifying Hysteresis and Voltage Fade in xLi2MnO3●(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content , 2014 .

[12]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[13]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[14]  Ilias Belharouak,et al.  Effect of interface modifications on voltage fade in 0.5Li2MnO3.0.5LiNi0.375Mn0.375Co0.25O2 cathode materials , 2014 .

[15]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[16]  Christopher S. Johnson,et al.  Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .

[17]  M. Balasubramanian,et al.  First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries , 2011 .

[18]  Tsutomu Ohzuku,et al.  High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 , 2011 .

[19]  Debasish Mohanty,et al.  Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion , 2014 .

[20]  Christopher S. Johnson,et al.  Solid State NMR Studies of Li2MnO3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade , 2015 .

[21]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[22]  Kevin G. Gallagher,et al.  Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density , 2013 .

[23]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[24]  Christopher S. Johnson,et al.  Aluminum and Gallium Substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 Layered Composite and the Voltage Fade Effect , 2015 .

[25]  Michael M. Thackeray,et al.  Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C , 1993 .

[26]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[27]  Michael M. Thackeray,et al.  Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment , 2009 .

[28]  M. Balasubramanian,et al.  Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy , 2011 .

[29]  Hyoun‐Ee Kim,et al.  Effect of lithium content on spinel phase evolution in the composite material LixNi0.25Co0.10Mn0.65O(3.4 + x) / 2 (0.8 ≤ x ≤ 1.6) for Li-ion batteries , 2016 .

[30]  Christopher S. Johnson,et al.  First-charge instabilities of layered-layered lithium-ion-battery materials. , 2015, Physical chemistry chemical physics : PCCP.

[31]  Christopher S. Johnson,et al.  Composite ‘Layered-Layered-Spinel’ Cathode Structures for Lithium-Ion Batteries , 2013 .

[32]  Debasish Mohanty,et al.  Neutron Diffraction and Magnetic Susceptibility Studies on a High-Voltage Li1.2Mn0.55Ni0.15Co0.10O2 Lithium Ion Battery Cathode: Insight into the Crystal Structure , 2013 .

[33]  Dean J. Miller,et al.  Advances in Stabilizing ‘Layered-Layered’ xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni, Co) Electrodes with a Spinel Component , 2014 .

[34]  Kevin G. Gallagher,et al.  Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries , 2012 .

[35]  Debasish Mohanty,et al.  Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies , 2013 .

[36]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[37]  Mahalingam Balasubramanian,et al.  Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. , 2015, Accounts of chemical research.

[38]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[39]  Debasish Mohanty,et al.  Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. , 2013, Physical chemistry chemical physics : PCCP.