Horseshoe in the hyperchaotic Mck Circuit

The well-known Matsumoto–Chua–Kobayashi (MCK) circuit is of significance for studying hyperchaos, since it was the first experimental observation of hyperchaos from a real physical system. In this paper, we discuss the existence of hyperchaos in this circuit by virtue of topological horseshoe theory. The two disjoint compact subsets producing a horseshoe found in a specific 3D cross-section, both expand in two directions under the fourth Poincare return map, this fact means that there exists hyperchaos in the circuit.

[1]  T. Tsubone,et al.  Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .

[2]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .

[3]  Federico Bizzarri,et al.  Basic bifurcation analysis of a hysteresis oscillator , 2001, Int. J. Circuit Theory Appl..

[4]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[5]  L. Chua,et al.  Experimental hyperchaos in coupled Chua's circuits , 1994 .

[6]  Toshimichi Saito,et al.  A simple hyperchaos generator based on impulsive switching , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[8]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[9]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[10]  Xiao-Song Yang,et al.  Hyperchaos in Hopfield-type neural networks , 2005, Neurocomputing.

[11]  P. Arena,et al.  Hyperchaos from cellular neural networks , 1995 .

[12]  Yu Zhang,et al.  Hyperchaotic synchronisation scheme for digital speech communication , 1999 .

[13]  Xiao-Song Yang,et al.  A planar topological horseshoe theory with applications to computer verifications of chaos , 2005 .

[14]  O. Rössler An equation for hyperchaos , 1979 .

[15]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[16]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[17]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[18]  G. Grassi,et al.  Synchronizing hyperchaotic systems by observer design , 1999 .

[19]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[20]  J. Yorke,et al.  Topological Horseshoes , 2001 .

[21]  Tomasz Kapitaniak,et al.  Chaos-hyperchaos transition in coupled Rössler systems , 2001 .

[22]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .