Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion
暂无分享,去创建一个
Rosemary A. Renaut | Saeed Vatankhah | Vahid E. Ardestani | R. Renaut | S. Vatankhah | V. E. Ardestani
[1] M. Saunders,et al. Towards a Generalized Singular Value Decomposition , 1981 .
[2] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[3] Michael S. Zhdanov,et al. Focusing geophysical inversion images , 1999 .
[4] Rosemary A. Renaut,et al. Automatic estimation of the regularization parameter in 2-D focusing gravity inversion: an application to the Safo manganese mine in northwest of Iran , 2013, ArXiv.
[5] Per Christian Hansen,et al. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.
[6] D. Oldenburg,et al. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .
[7] K. Kubik,et al. Compact gravity inversion , 1983 .
[8] A. Hördt,et al. A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support , 2008 .
[9] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[10] Rosemary A. Renaut,et al. A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems , 2009 .
[11] M. Zhdanov,et al. Three-dimensional inversion of multitransmitter electromagnetic data based on the localized quasi-linear approximation , 2002 .
[12] M. Nabighian,et al. Historical development of the gravity method in exploration , 2005 .
[13] M. Chouteau,et al. Constraints in 3D gravity inversion , 2001 .
[14] Douglas W. Oldenburg,et al. 3-D inversion of magnetic data , 1996 .
[15] Michael S. Zhdanov,et al. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .
[16] 3-D Inversion of DC Resistivity Data Using an L-curve Criterion , 1999 .
[17] Misha Elena Kilmer,et al. Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..
[18] Gene H. Golub,et al. Matrix computations , 1983 .
[19] Rosemary A Renaut,et al. Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion , 2014, 1402.3365.
[20] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[21] V. Morozov. On the solution of functional equations by the method of regularization , 1966 .
[22] Vahid E. Ardestani. Detecting, delineating and modeling the connected solution cavities in a dam site via microgravity data , 2013, Acta Geodaetica et Geophysica.
[23] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .