Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion

The χ 2 principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated using the standard form transformation. Solution of the resulting Tikhonov functional is found efficiently using the singular value decomposition of the transformed model matrix, which also provides for efficient determination of the updated regularization parameter each step. Experimental 3D simulations using synthetic data of a dipping dike and a cube anomaly demonstrate that both parameter estimation techniques outperform the Morozov discrepancy principle for determining the regularization parameter. Smaller relative errors of the reconstructed models are obtained with fewer iterations. Data acquired over the Gotvand dam site in the south-west of Iran are used to validate use of the methods for inversion of practical data and provide good estimates of anomalous structures within the subsurface.

[1]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[2]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[3]  Michael S. Zhdanov,et al.  Focusing geophysical inversion images , 1999 .

[4]  Rosemary A. Renaut,et al.  Automatic estimation of the regularization parameter in 2-D focusing gravity inversion: an application to the Safo manganese mine in northwest of Iran , 2013, ArXiv.

[5]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[6]  D. Oldenburg,et al.  A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .

[7]  K. Kubik,et al.  Compact gravity inversion , 1983 .

[8]  A. Hördt,et al.  A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support , 2008 .

[9]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[10]  Rosemary A. Renaut,et al.  A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems , 2009 .

[11]  M. Zhdanov,et al.  Three-dimensional inversion of multitransmitter electromagnetic data based on the localized quasi-linear approximation , 2002 .

[12]  M. Nabighian,et al.  Historical development of the gravity method in exploration , 2005 .

[13]  M. Chouteau,et al.  Constraints in 3D gravity inversion , 2001 .

[14]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[15]  Michael S. Zhdanov,et al.  Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .

[16]  3-D Inversion of DC Resistivity Data Using an L-curve Criterion , 1999 .

[17]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Rosemary A Renaut,et al.  Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion , 2014, 1402.3365.

[20]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[21]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[22]  Vahid E. Ardestani Detecting, delineating and modeling the connected solution cavities in a dam site via microgravity data , 2013, Acta Geodaetica et Geophysica.

[23]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .