Lessons from the Congested Clique Applied to MapReduce

The main results of this paper are (I) a simulation algorithm which, under quite general constraints, transforms algorithms running on the Congested Clique into algorithms running in the MapReduce model, and (II) a distributed O(Δ)-coloring algorithm running on the Congested Clique which has an expected running time of O(1) rounds, if Δ ≥ Θ(log4 n); and O(logloglogn) rounds otherwise. Applying the simulation theorem to the Congested Clique O(Δ)-coloring algorithm yields an O(1)-round O(Δ)-coloring algorithm in the MapReduce model.

[1]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[2]  Sergei Vassilvitskii,et al.  Fast greedy algorithms in mapreduce and streaming , 2013, SPAA.

[3]  Sergei Vassilvitskii,et al.  A model of computation for MapReduce , 2010, SODA '10.

[4]  Benjamin Moseley,et al.  Fast clustering using MapReduce , 2011, KDD.

[5]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[6]  Christoph Lenzen,et al.  Optimal deterministic routing and sorting on the congested clique , 2012, PODC '13.

[7]  Öjvind Johansson Simple Distributed Delta+1-coloring of Graphs , 1999, Inf. Process. Lett..

[8]  Boaz Patt-Shamir,et al.  Distributed MST for constant diameter graphs , 2001, PODC '01.

[9]  Andrew Berns,et al.  Super-Fast Distributed Algorithms for Metric Facility Location , 2012, ICALP.

[10]  Sriram V. Pemmaraju,et al.  A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location , 2013, DISC.

[11]  Joachim Gehweiler,et al.  A distributed O(1)-approximation algorithm for the uniform facility location problem , 2006, SPAA.

[12]  Christoph Lenzen,et al.  "Tri, Tri Again": Finding Triangles and Small Subgraphs in a Distributed Setting - (Extended Abstract) , 2012, DISC.

[13]  Boaz Patt-Shamir,et al.  The round complexity of distributed sorting: extended abstract , 2011, PODC '11.

[14]  Silvio Lattanzi,et al.  Filtering: a method for solving graph problems in MapReduce , 2011, SPAA '11.

[15]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.