Coarsening in Algebraic Multigrid using Gaussian Processes

Multigrid methods have proven to be an invaluable tool to efficiently solve large sparse linear systems arising in the discretization of partial differential equations (PDEs). Algebraic multigrid methods and in particular adaptive algebraic multigrid approaches have shown that multigrid efficiency can be obtained without having to resort to properties of the PDE. Yet the required setup of these methods poses a not negligible overhead cost. Methods from machine learning have attracted attention to streamline processes based on statistical models being trained on the available data. Interpreting algebraically smooth error as an instance of a Gaussian process, we develop a new, data driven approach to construct adaptive algebraic multigrid methods. Based on Gaussian a priori distributions, Kriging interpolation minimizes the mean squared error of the a posteriori distribution, given the data on the coarse grid. Going one step further, we exploit the quantification of uncertainty in the Gaussian process model in order to construct efficient variable splittings. Using a semivariogram fit of a suitable covariance model we demonstrate that our approach yields efficient methods using a single algebraically smooth vector.

[1]  Thomas A. Manteuffel,et al.  Operator‐based interpolation for bootstrap algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[2]  Ludmil T. Zikatanov,et al.  Algebraic multigrid methods * , 2016, Acta Numerica.

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Artem Napov,et al.  An Efficient Multigrid Method for Graph Laplacian Systems II: Robust Aggregation , 2017, SIAM J. Sci. Comput..

[5]  Ludmil T. Zikatanov,et al.  An algebraic multilevel method for anisotropic elliptic equations based on subgraph matching , 2012, Numer. Linear Algebra Appl..

[6]  Achi Brandt,et al.  Bootstrap Algebraic Multigrid: status report, open problems, and outlook , 2014, 1406.1819.

[7]  Marian Brezina,et al.  Energy Optimization of Algebraic Multigrid Bases , 1998, Computing.

[8]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[9]  Florian Schäfer,et al.  Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity , 2017, Multiscale Model. Simul..

[10]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[11]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[12]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[13]  De Barra Introduction to Measure Theory , 1974 .

[14]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[15]  Achi Brandt,et al.  Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..

[16]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[17]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[18]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[19]  A. Brandt,et al.  Algebraic distance for anisotropic diffusion problems: multilevel results , 2014, 1409.4702.

[20]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[21]  Matthias Rottmann,et al.  Least Angle Regression Coarsening in Bootstrap Algebraic Multigrid , 2018, SIAM J. Sci. Comput..

[22]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[23]  Jacob B. Schroder,et al.  A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..

[24]  M. Sherman Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties , 2010 .

[25]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[26]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[27]  D. Bartuschat Algebraic Multigrid , 2007 .

[28]  Ludmil T. Zikatanov,et al.  An Algebraic Multigrid Method Based on Matching in Graphs , 2013, Domain Decomposition Methods in Science and Engineering XX.

[29]  V. Bogachev Gaussian Measures on a , 2022 .

[30]  A. Slinko Compression , 2020, Encyclopedic Dictionary of Archaeology.

[31]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[32]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[33]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[34]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[35]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..

[36]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[37]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[38]  R. Adler The Geometry of Random Fields , 2009 .

[39]  Fei Cao,et al.  Optimal Interpolation and Compatible Relaxation in Classical Algebraic Multigrid , 2017, SIAM J. Sci. Comput..