DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering

Recent approaches to global illumination for dynamic scenes achieve interactive frame rates by using coarse approximations to geometry, lighting, or both, which limits scene complexity and rendering quality. High-quality global illumination renderings of complex scenes are still limited to methods based on ray tracing. While conceptually simple, these techniques are computationally expensive. We present an efficient and scalable method to compute global illumination solutions at interactive rates for complex and dynamic scenes. Our method is based on parallel final gathering running entirely on the GPU. At each final gathering location we perform micro-rendering: we traverse and rasterize a hierarchical point-based scene representation into an importance-warped micro-buffer, which allows for BRDF importance sampling. The final reflected radiance is computed at each gathering location using the micro-buffers and is then stored in image-space. We can trade quality for speed by reducing the sampling rate of the gathering locations in conjunction with bilateral upsampling. We demonstrate the applicability of our method to interactive global illumination, the simulation of multiple indirect bounces, and to final gathering from photon maps.

[1]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[2]  Kun Zhou,et al.  Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation , 2006, ACM Trans. Graph..

[3]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[4]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[6]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[7]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[8]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, ACM Trans. Graph..

[9]  Peter-Pike J. Sloan,et al.  Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation , 2006, SIGGRAPH 2006.

[10]  Adam Arbree,et al.  To appear in the ACM SIGGRAPH conference proceedings Lightcuts: A Scalable Approach to Illumination , 2022 .

[11]  Marc Stamminger,et al.  Splatting indirect illumination , 2006, I3D '06.

[12]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[13]  Kadi Bouatouch,et al.  Radiance caching for efficient global illumination computation , 2005 .

[14]  Kei Iwasaki,et al.  Precomputed Radiance Transfer for Dynamic Scenes Taking into Account Light Interreflection , 2007, Rendering Techniques.

[15]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[16]  Henrik Wann Jensen,et al.  Importance Driven Path Tracing using the Photon Map , 1995, Rendering Techniques.

[17]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[18]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[19]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH Asia '08.

[20]  Jaakko Lehtinen,et al.  A meshless hierarchical representation for light transport , 2008, ACM Trans. Graph..

[21]  Naga K. Govindaraju,et al.  Image-Based Proxy Accumulation for Real-Time Soft Global Illumination , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[22]  Frédo Durand,et al.  Implicit visibility and antiradiance for interactive global illumination , 2007, SIGGRAPH 2007.

[23]  Maxim Shevtsov,et al.  Highly Parallel Fast KD‐tree Construction for Interactive Ray Tracing of Dynamic Scenes , 2007, Comput. Graph. Forum.

[24]  Adam Arbree,et al.  Multidimensional lightcuts , 2006, ACM Trans. Graph..

[25]  Rui Wang,et al.  Fast, realistic lighting and material design using nonlinear cut approximation , 2008, SIGGRAPH Asia '08.

[26]  Marc Stamminger,et al.  Data-Parallel Hierarchical Link Creation for Radiosity , 2009, EGPGV@Eurographics.

[27]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH 2008.

[28]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, SIGGRAPH 2009.

[29]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[30]  Per H. Christensen,et al.  Point-Based Approximate Color Bleeding , 2008 .

[31]  Kavita Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[32]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[33]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[34]  Frédo Durand,et al.  Implicit visibility and antiradiance for interactive global illumination , 2007, ACM Trans. Graph..

[35]  Naga K. Govindaraju,et al.  Image-Based Proxy Accumulation for Real-Time Soft Global Illumination , 2007 .

[36]  Carsten Dachsbacher,et al.  Reflective shadow maps , 2005, I3D '05.

[37]  Marc Stamminger,et al.  Sequential point trees , 2003, ACM Trans. Graph..

[38]  Michael Todd Bunnell,et al.  Dynamic Ambient Occlusion and Indirect Lighting , 2005 .