TDDFT from Molecules to Solids: The Role of Long-Range Interactions

Classical Hartree effects contribute substantially to the success of time- dependent density functional theory, especially in finite systems. Moreover, exchange- correlation contributions have an asymptotic Coulomb tail similar to the Hartree term, and turn out to be crucial in describing response properties of solids. In this work, we analyze in detail the role of the long-range part of the Coulomb potential in the dielectric response of finite and infinite systems, and elucidate its importance in distinguishing between optical and electron energy loss spectra (in the long wavelength limit q 3 0). We illustrate numerically and analytically how the imaginary part of the dielectric function and the loss function coincide for finite systems, and how they start to show differences as the distance between objects in an infinite array is decreased (which simulates the formation of a solid). We discuss calculations for the model case of a set of interacting and noninteracting beryllium atoms, as well as for various realistic systems, ranging from molecules to solids, and for complex systems, such as superlattices, nanotubes, nanowires, and nanoclusters. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 102: 684 -701, 2005

[1]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[2]  Dennis R. Salahub,et al.  Exchange-only optimized effective potential for molecules from resolution-of-the-identity techniques: Comparison with the local density approximation, with and without asymptotic correction , 2002 .

[3]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .

[4]  N. Vast,et al.  Electronic structure and electron energy-loss spectroscopy of ZrO 2 zirconia , 2004 .

[5]  D. Chuu,et al.  Low-frequency plasmons in metallic carbon nanotubes , 1997 .

[6]  Ferrell,et al.  Generation of surface excitations on dielectric spheres by an external electron beam. , 1985, Physical review letters.

[7]  A. Rinzler,et al.  LOCALIZED AND DELOCALIZED ELECTRONIC STATES IN SINGLE-WALL CARBON NANOTUBES , 1998 .

[8]  N. Vast,et al.  Ab Initio calculations of the anisotropic dielectric tensor of GaAs/AlAs superlattices. , 2002, Physical review letters.

[9]  O. Bohigas,et al.  Sum Rules for Nuclear Collective Excitations , 1979 .

[10]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[11]  A. Fiore,et al.  Phase matching using an isotropic nonlinear optical material , 1998, Nature.

[12]  Bréchignac,et al.  Optical response of large lithium clusters: Evolution toward the bulk. , 1993, Physical review letters.

[13]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[14]  Angel Rubio,et al.  Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite , 2004 .

[15]  Allan,et al.  Excitonic and quasiparticle gaps in Si nanocrystals , 2000, Physical review letters.

[16]  Xavier Gonze,et al.  Relationship of Kohn-Sham eigenvalues to excitation energies , 1998 .

[17]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[18]  N. Vast,et al.  Ab initio and semiempirical dielectric response of superlattices , 2004 .

[19]  Delano P. Chong,et al.  Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials , 2002 .

[20]  Steven G. Louie,et al.  Quantum confinement and optical gaps in Si nanocrystals , 1997 .

[21]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[22]  Angel Rubio,et al.  Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions. , 2003, Physical review letters.

[23]  Density-relaxation part of the self energy , 1997, cond-mat/9710129.

[24]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[25]  Steven G. Louie,et al.  Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters , 1998 .

[26]  D. Salahub,et al.  Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra , 2000 .

[27]  Angel Rubio,et al.  Excitonic effects in solids described by time-dependent density-functional theory. , 2002, Physical review letters.

[28]  Fink,et al.  Local-field effects in NiO and Ni. , 1994, Physical review. B, Condensed matter.

[29]  C. Kittel Introduction to solid state physics , 1954 .

[30]  P. Schattschneider,et al.  Local field effects in the electron energy loss spectra of rutile TiO2. , 2002, Physical review letters.

[31]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[32]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[33]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[34]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[35]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[36]  J. Chelikowsky,et al.  Ab initio absorption spectra and optical gaps in nanocrystalline silicon. , 2001, Physical review letters.

[37]  N. Vast,et al.  Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory , 2004 .

[38]  A. Marini,et al.  Ab initiocalculation of the exchange-correlation kernel in extended systems , 2003 .

[39]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[40]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[41]  J. E. Klepeis,et al.  Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation , 2003 .

[42]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[43]  J. Stiebling Optische Eigenschaften des einkristallinen Siliziums aus Elektronenenergieverlustmessungen , 1978 .

[44]  Bréchignac,et al.  Collective resonance in large free potassium cluster ions. , 1992, Physical review letters.

[45]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[46]  Á. Rubio,et al.  Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory , 2001, cond-mat/0102234.

[47]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[48]  M. L. Cohen,et al.  High accuracy many-body calculational approaches for excitations in molecules. , 2000, Physical review letters.

[49]  H. J. Liu,et al.  Polarized absorption spectra of single-walled 4 A carbon nanotubes aligned in channels of an AlPO(4)-5 single crystal. , 2001, Physical review letters.

[50]  Á. Rubio,et al.  The static polarisability of metal clusters and spheres in an improved Thomas-Fermi approximation , 1989 .

[51]  Öğüt, Chelikowsky, and Louie Reply: , 1998 .

[52]  L. Reining,et al.  Parameter-free calculation of response functions in time-dependent density-functional theory. , 2003, Physical review letters.

[53]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[54]  Angel Rubio,et al.  Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. , 2003, Physical review letters.

[55]  Alonso,et al.  Ab Initio Photoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters. , 1996, Physical review letters.