Delta and jackknife estimators with low bias for functions of binomial and multinomial parameters

An estimator is said to be of orders>0 if its bias has magnitude n−s, where n is the sample size. We give delta estimators and jackknife estimators of order four for smooth functions of the parameters of a multinomial distribution. An unbiased estimator is given for its density function. We also give a jackknife estimator of any order for smooth functions of the binomial parameter.

[1]  V. N. Antón,et al.  On the use of simulation methods to compute probabilities: application to the first division Spanish soccer league , 2010 .

[2]  H. L. Gray,et al.  The Generalised Jackknife Statistic , 1974 .

[3]  H. L. Gray,et al.  On Bias Reduction in Estimation , 1971 .

[4]  Kunio Tanabe,et al.  An exact Cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications , 1992 .

[5]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[6]  C. Withers Bias reduction by Taylor series , 1987 .

[7]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[8]  C. Withers,et al.  Analytic Bias Reduction for $k$-Sample Functionals , 2009, 0903.2889.

[9]  J. Wishart,et al.  Cumulants of multivariate multinomial distributions. , 1949, Biometrika.

[10]  J. Ganju,et al.  The benefit of stratification in clinical trials revisited , 2011, Statistics in medicine.

[11]  Tianming Wang,et al.  Genome analysis with the conditional multinomial distribution profile , 2010, Journal of Theoretical Biology.

[12]  Murray A. Jorgensen Using Multinomial Mixture Models to Cluster Internet Traffic , 2004 .

[13]  D. Shiode,et al.  Longline hook selectivity for red tilefish Branchiostegus japonicus in the East China Sea , 2009, Fisheries Science.

[14]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[15]  C. Withers,et al.  Expansions for the Distribution and Quantiles of a Regular Functional of the Empirical Distribution with Applications to Nonparametric Confidence Intervals , 1983 .