Invention of Prediction Structures and Categorization of Robust MPC Syntheses

Abstract This plenary paper is concerned with robust model predictive control (MPC) synthesis. In particular, the novel notion of prediction structures is introduced, and then utilized to derive a precise and compact overview of the existing robust MPC (RMPC) syntheses as well as to indicate direct improvements of their system theoretic properties. The prediction structures paradigm allows for a systematic, implementation and examples independent, comparison and classification of the existing RMPC syntheses. The corresponding categorization of the currently available RMPC syntheses is derived by: ( i ) introducing the adequate indices as measures of structural (including topological and system theoretic) properties and computational complexity, and ( ii ) analysing the trade–off between the guaranteed structural properties and the necessary computational complexity. The associated analysis is based on the classical game and utility theory notions; for simplicity, it is delivered by deploying the aggregated structural property and computational complexity indices; furthermore, it is complemented with an unambiguous analysis of the “holy–grail” trade–off between the quality of structural properties and the degree of computational complexity.

[1]  R. Bellman Dynamic programming. , 1957, Science.

[2]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[3]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[4]  F. Blanchini Control synthesis for discrete time systems with control and state bounds in the presence of disturbances , 1990 .

[5]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[6]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[7]  Zhenghong Yu,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[8]  Basil Kouvaritakis,et al.  Stable generalized predictive control with constraints and bounded disturbances , 1997, Autom..

[9]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[10]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[11]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[14]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[15]  J. Löfberg,et al.  Approximations of closed-loop minimax MPC , 2003, CDC.

[16]  J. Maciejowski,et al.  Robustly stable feedback min-max model predictive control , 2003, Proceedings of the 2003 American Control Conference, 2003..

[17]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[18]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[19]  O. Mangasarian A Newton Method for Linear Programming , 2004 .

[20]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[21]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[22]  Pierre-Antoine Absil,et al.  Constraint Reduction for Linear Programs with Many Inequality Constraints , 2006, SIAM J. Optim..

[23]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[24]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[25]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[26]  David Q. Mayne,et al.  Optimized robust control invariance for linear discrete-time systems: Theoretical foundations , 2007, Autom..

[27]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[28]  Sasa V. Rakovic,et al.  Minkowski algebra and Banach Contraction Principle in set invariance for linear discrete time systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[29]  Mirko Fiacchini,et al.  Invariant Approximations of the Maximal Invariant Set or "Encircling the Square" , 2008 .

[30]  Zvi Artstein,et al.  Feedback and invariance under uncertainty via set-iterates , 2008, Autom..

[31]  Sasa V. Rakovic,et al.  Local Control Lyapunov Functions for Constrained Linear Discrete-Time Systems: The Minkowski Algebra Approach , 2009, IEEE Transactions on Automatic Control.

[32]  Eduardo F. Camacho,et al.  Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability , 2009, Eur. J. Control.

[33]  S. Raković Set Theoretic Methods in Model Predictive Control , 2009 .

[34]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems: Time varying case , 2009, Autom..

[35]  Sasa V. Rakovic,et al.  Parameterized Robust Control Invariant Sets for Linear Systems: Theoretical Advances and Computational Remarks , 2010, IEEE Transactions on Automatic Control.

[36]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control 3rd Edition, Volume II , 2010 .

[37]  Zvi Artstein,et al.  Set invariance under output feedback: a set-dynamics approach , 2011, Int. J. Syst. Sci..

[38]  Rolf Findeisen,et al.  Parameterized Tube Model Predictive Control , 2012, IEEE Transactions on Automatic Control.

[39]  Christos Panos,et al.  Fully parameterized tube model predictive control , 2012 .

[40]  Rolf Findeisen,et al.  Homothetic tube model predictive control , 2012, Autom..