Toward a better comprehension and modeling of hysteresis cycles in the water sorption-desorption process for cement based materials

Abstract The aim of this work is to describe a method based on a simple representation of the pore size distribution, which is able to predict hysteresis phenomena encountered in water sorption–desorption isotherms, particularly for cementitious materials. The hysteresis effect due to network constrictivity is taken into account in order to extend models of transfer in porous media to situations involving wetting–drying cycles. This is not achieved in earlier models and their performance in terms of prediction in such conditions is thus limited. The present modeling is based on an idealized pore size distribution. This has three modes, associated with C–S–H pores, medium capillary pores, and large capillary pores including consideration of cracks. The distribution is assessed from the chemical composition of the cement, the formulation of the material, the degree of hydration, the total water porosity and the intrinsic permeability.

[1]  V. Baroghel-Bouny Water Vapour Sorption Experiments on Hardened Cementitious Materials: Part I: Essential Tool for Analysis of Hygral Behaviour and its Relation to Pore Structure , 2007 .

[2]  Koichi Maekawa,et al.  Multi-scale modeling of structural concrete , 2008 .

[3]  Jacques Comiti,et al.  A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles , 1989 .

[4]  D. Breysse,et al.  Modelling of permeability in cement-based materials: Part 1-uncracked medium , 1997 .

[5]  Guillaume Camps,et al.  Etude des interactions chemo-mécaniques pour la simulation du cycle de vie d'un élément de stockage en béton , 2008 .

[6]  Zoubeir Lafhaj,et al.  Experimental study of gas and liquid permeability of a mortar , 2002 .

[7]  O. Amiri,et al.  Tri-dimensional modelling of cementitious materials permeability from polymodal pore size distribution obtained by mercury intrusion porosimetry tests , 2005 .

[9]  Roland Glantz,et al.  Calibration of a Pore-Network Model by a Pore-Morphological Analysis , 2003 .

[10]  F. Brue Rôles de la température et de la composition sur le couplage thermo-hydro-mécanique des bétons , 2009 .

[11]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[12]  Lu Cui,et al.  Permeability and pore structure of OPC paste , 2001 .

[13]  A. S. El-Dieb,et al.  Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data , 1994 .

[14]  J. Monlouis-Bonnaire Modélisation numérique des transferts couplés air-eau-sel dans les matériaux cimentaires et les terres cuites , 2003 .

[15]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[16]  Frédéric Adenot,et al.  Durabilite du beton : caracterisation et modelisation des processus physiques et chimiques de degradation du ciment , 1992 .

[17]  S. Brunauer,et al.  Some remarks about capillary condensation and pore structure analysis , 1967 .

[18]  S. Poyet Experimental investigation of the effect of temperature on the first desorption isotherm of concrete , 2009 .

[19]  Andre Peters,et al.  Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model , 2008 .

[20]  B. Bary,et al.  Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model , 2007 .

[21]  Seung-Jun Kwon,et al.  Permeability Characteristics of Carbonated Concrete Considering Capillary Pore Structure , 2007 .

[22]  H. Sallée,et al.  Water vapour adsorption and transfer in cement-based materials: a network simulation , 1992 .

[23]  Z. Koza,et al.  Tortuosity-porosity relation in porous media flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  A. Nonat THE STRUCTURE AND STOICHIOMETRY OF C-S-H , 2004 .

[25]  J. Mcbain An Explanation of Hysteresis in the Hydration and Dehydration of Gels , 1935 .

[26]  G. Ye,et al.  Modelling of water permeability in cementitious materials , 2006 .

[27]  L. Franke,et al.  Inkbottle Pore-Method: Prediction of hygroscopic water content in hardened cement paste at variable climatic conditions , 2006 .

[28]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[29]  Z. Bažant,et al.  Moisture diffusion in cementitious materials Adsorption isotherms , 1994 .

[30]  S. C. Carniglia Construction of the tortuosity factor from porosimetry , 1986 .

[31]  K. Aligizaki Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements , 2005 .

[32]  M. Dubois,et al.  Mercury intrusion porosimetry and hierarchical structure of cement pastes: Theory and experiment , 2000 .

[33]  P. Philippi,et al.  Modelling moisture distribution and isothermal transfer in a heterogeneous porous material , 1995 .

[34]  D. Verganelakis,et al.  Capillary Imbibition and Pore Characterisation in Cement Pastes , 2000 .

[35]  M. D. Nguyen Modélisation des couplages entre hydratation et dessiccation des matériaux cimentaires à l'issue du décoffrage. Étude de la dégradation des propriétés de transfert , 2009 .

[36]  Vincent Waller,et al.  Relations entre composition des betons, exothermie en cours de prise et resistance en compression , 1999 .

[37]  Lutz Franke,et al.  Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste , 2006 .

[38]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[39]  A. Aït‐Mokhtar,et al.  A new model to calculate water permeability of cement-based materials from MIP results , 2002 .

[40]  Véronique Baroghel-Bouny,et al.  Water vapour sorption experiments on hardened cementitious materials. Part II: Essential tool for assessment of transport properties and for durability prediction , 2007 .

[41]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[42]  B. Bary A polydispersed particle system representation of the porosity for non-saturated cementitious materials , 2006 .

[43]  Bernard Perrin,et al.  Prediction of the relative permeability to gas flow of cement-based materials , 2004 .

[44]  R. Hooton,et al.  Using pore parameters to estimate permeability or conductivity of concrete , 2007 .

[45]  Filip Descamps,et al.  A Multiscale Network Model for Simulating Moisture Transfer Properties of Porous Media , 1999 .

[46]  Nicolas Hyvert,et al.  Application de l'approche probabiliste à la durabilité des produits préfabriqués en béton , 2009 .

[47]  J. Marchand,et al.  Pore water distribution in mortar during drying as determined by NMR , 2001 .

[48]  B. Pradhan,et al.  Prediction of the hydraulic diffusivity from pore size distribution of concrete , 2005 .

[49]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .