Association Rule Interestingness Measures: Experimental and Theoretical Studies
暂无分享,去创建一个
Patrick Meyer | Philippe Lenca | Stéphane Lallich | Benoît Vaillant | P. Meyer | P. Lenca | B. Vaillant | S. Lallich
[1] Michael Greenacre,et al. Exploratory data analysis leading towards the most interesting simple association rules , 2008, Comput. Stat. Data Anal..
[2] Howard J. Hamilton,et al. Evaluation of Interestingness Measures for Ranking Discovered Knowledge , 2001, PAKDD.
[3] Rajeev Motwani,et al. Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.
[4] Heikki Mannila,et al. Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.
[5] Ke Wang,et al. Visually Aided Exploration of Interesting Association Rules , 1999, PAKDD.
[6] Olivier Teytaud,et al. Contrôle du risque multiple pour la sélection de règles d'association significatives , 2004, EGC.
[7] Yves Kodratoff,et al. Evaluation de la résistance au bruit de quelques mesures d'extraction de règles d'association , 2002, EGC.
[8] Andreas Wierse,et al. Information Visualization in Data Mining and Knowledge Discovery , 2001 .
[9] Abraham Silberschatz,et al. On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.
[10] Alexander Tuzhilin,et al. User-Assisted Knowledge Discovery: How Much Should the User Be Involved , 1996 .
[11] Shusaku Tsumoto,et al. Evaluating Model Construction Methods with Objective Rule Evaluation Indices to Support Human Experts , 2006, MDAI.
[12] Einoshin Suzuki,et al. Discovering Interesting Exception Rules with Rule Pair , 2004 .
[13] Rajeev Motwani,et al. Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.
[14] Hongjun Lu,et al. Exception Rule Mining with a Relative Interestingness Measure , 2000, PAKDD.
[15] J. Loevinger. A systematic approach to the construction and evaluation of tests of ability. , 1947 .
[16] Mohamed Bendou. Extraction de connaissances à partir des données à l'aide des réseaux bayésiens , 2003 .
[17] Szymon Jaroszewicz,et al. A General Measure of Rule Interestingness , 2001, PKDD.
[18] Xuan-Hiep Huynh,et al. ARQAT : an exploratory analysis tool for interestingness measures , 2005 .
[19] Patrick Meyer,et al. Aide multicritère à la décision pour évaluer les indices de qualité des connaissances , 2003, EGC.
[20] Régis Gras,et al. Using information-theoretic measures to assess association rule interestingness , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[21] Bertrand Mareschal,et al. Prométhée-Gaia: une méthodologie d'aide à la décision en présence de critères multiples , 2002 .
[22] Howard J. Hamilton,et al. Measuring the interestingness of discovered knowledge: A principled approach , 2003, Intell. Data Anal..
[23] B. Padmanabhan. The Interestingness Paradox in Pattern Discovery , 2004 .
[24] Wynne Hsu,et al. Analyzing the Subjective Interestingness of Association Rules , 2000, IEEE Intell. Syst..
[25] K. Pearson. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia , 1896 .
[26] Daniel A. Keim,et al. Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..
[27] V. Giakoumakis,et al. Coefficients d'accord entre deux préordres totaux , 1987 .
[28] François Poulet,et al. Towards Visual Data Mining , 2004, ICEIS.
[29] K. Pearson. Mathematical contributions to the theory of evolution.—On the law of reversion , 2022, Proceedings of the Royal Society of London.
[30] Wynne Hsu,et al. Using General Impressions to Analyze Discovered Classification Rules , 1997, KDD.
[31] Régis Gras,et al. L'implication statistique : nouvelle méthode exploratoire de données : applications à la didactique , 1996 .
[32] Michael Greenacre,et al. Visualization of Categorical Data , 1998 .
[33] Philippe Lenca,et al. A Clustering of Interestingness Measures , 2004, Discovery Science.
[34] Yoshinori Sato,et al. Comparison between objective interestingness measures and real human interest in medical data mining , 2004 .
[35] Gregory Piatetsky-Shapiro,et al. Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.
[36] Peter A. Flach,et al. Ninth International Workshop on Inductive Logic Programming (ILP'99) , 1999 .
[37] Philippe Lenca,et al. Critères d'évaluation des mesures de qualité des règles d'association , 2003 .
[38] Philippe Lenca. Human centered processes , 2002, Eur. J. Oper. Res..
[39] Jan Rauch,et al. Mining for 4ft Association Rules , 2000, Discovery Science.
[40] Gilbert Saporta,et al. Une comparaison de certains indices de pertinence des règles d'association , 2006, EGC.
[41] Raymond Bisdorff. Bipolar ranking from pairwise fuzzy outrankings , 1999 .
[42] Simeon J. Simoff,et al. Towards the development of environments for designing visualisation support for visual data mining. , 2001 .
[43] Martin Theus,et al. Visualization of categorical data , 1997 .
[44] Jaideep Srivastava,et al. Selecting the right interestingness measure for association patterns , 2002, KDD.
[45] Nicolas Pasquier,et al. Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.
[46] Jaideep Srivastava,et al. Selecting the right objective measure for association analysis , 2004, Inf. Syst..
[47] Luc De Raedt,et al. CorClass: Correlated Association Rule Mining for Classification , 2004, Discovery Science.
[48] Fabrice Guillet,et al. A virtual Reality Environment for Knowledge Mining , 2003 .
[49] Hui Xiong,et al. Mining strong affinity association patterns in data sets with skewed support distribution , 2003, Third IEEE International Conference on Data Mining.
[50] Howard J. Hamilton,et al. Knowledge discovery and measures of interest , 2001 .
[51] Peter A. Flach,et al. Rule Evaluation Measures: A Unifying View , 1999, ILP.
[52] Rajjan Shinghal,et al. Evaluating the Interestingness of Characteristic Rules , 1996, KDD.
[53] Susan Jones,et al. LEGOL 2.0: A relational specification language for complex rules , 1979, Inf. Syst..
[54] Alex Alves Freitas,et al. On rule interestingness measures , 1999, Knowl. Based Syst..
[55] Edith Cohen,et al. Finding interesting associations without support pruning , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).
[56] Philippe Lenca,et al. Dynamic adaptation of rules bases under cognitive constraints , 2002, Eur. J. Oper. Res..
[57] P. Vincke,et al. Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .
[58] Kenneth McGarry,et al. A survey of interestingness measures for knowledge discovery , 2005, The Knowledge Engineering Review.
[59] Frank Höppner,et al. Association Rules , 2005, Data Mining and Knowledge Discovery Handbook.
[60] Petr Hájek,et al. The GUHA method of automatic hypotheses determination , 1966, Computing.
[61] Pang-Ning Tan,et al. Interestingness Measures for Association Patterns : A Perspective , 2000, KDD 2000.
[62] Irving John Good,et al. The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .
[63] H. Jeffreys. Some Tests of Significance, Treated by the Theory of Probability , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.
[64] Régis Gras,et al. Une version entropique de l'intensité d'implication pour les corpus volumineux , 2001, EGC.
[65] Howard J. Hamilton,et al. Applying Objective Interestingness Measures in Data Mining Systems , 2000, PKDD.
[66] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[67] Hui Xiong,et al. Mining confident co-location rules without a support threshold , 2003, SAC '03.
[68] Régis Gras,et al. Élaboration et évaluation d'un indice d'implication pour des données binaires. I , 1981 .
[69] Jean Pierre Brans,et al. A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .
[70] Gregory Piatetsky-Shapiro,et al. Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.
[71] Jacob Cohen. A Coefficient of Agreement for Nominal Scales , 1960 .
[72] Einoshin Suzuki,et al. In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules , 2002, Progress in Discovery Science.
[73] Zdzisław Pawlak,et al. Can Bayesian confirmation measures be useful for rough set decision rules? , 2004, Eng. Appl. Artif. Intell..
[74] Tomasz Imielinski,et al. Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.
[75] Régis Gras,et al. Assessing rule interestingness with a probabilistic measure of deviation from equilibrium , 2005 .
[76] Patrick Meyer,et al. Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..
[77] Jean-Hugues Chauchat,et al. Bertin's Graphics and Multidimensional Data Analysis , 1998 .
[78] Régis Gras,et al. Une version discriminante de l'indice probabiliste d'ècart à l'èquilibre pour mesure la qualité des règles , 2005 .
[79] Sylvie Helene Guillaume,et al. Traitement des donnees volumineuses. Mesures et algorithmes d'extraction de regles d'association et regles ordinales , 2000 .
[80] Kenneth Ward Church,et al. Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.
[81] Philippe Lenca,et al. Aggregation of Valued Relations Applied to Association Rule Interestingness Measures , 2006, MDAI.
[82] P. Ribenboim,et al. Collected Papers, Volume 1+2 , 1999 .
[83] Christian Borgelt,et al. Induction of Association Rules: Apriori Implementation , 2002, COMPSTAT.
[84] O. Teytaud,et al. Évaluation et validation de l'intérêt des règles d'association , 2003 .
[85] Geert Wets,et al. Defining interestingness for association rules , 2003 .
[86] P. Lenca,et al. On the robustness of association rules , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.
[87] Roberto J. Bayardo,et al. Mining the most interesting rules , 1999, KDD '99.
[88] Jérôme Azé,et al. Une mesure probabiliste contextuelle discriminante de qualité des règles d'association , 2003, EGC.
[89] A. W. Edwards. The Measure of Association in a 2 × 2 Table , 1963 .