Constrained convex minimization via model-based excessive gap
暂无分享,去创建一个
[1] V. Cevher,et al. A Primal-Dual Algorithmic Framework for Constrained Convex Minimization , 2014, 1406.5403.
[2] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[3] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[4] A. Auslender. Optimisation : méthodes numériques , 1976 .
[5] Marc Teboulle,et al. A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..
[6] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[7] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[8] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[9] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[10] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[11] Yurii Nesterov,et al. Excessive Gap Technique in Nonsmooth Convex Minimization , 2005, SIAM J. Optim..
[12] Alexander G. Gray,et al. Stochastic Alternating Direction Method of Multipliers , 2013, ICML.
[13] Volkan Cevher,et al. Convexity in Source Separation : Models, geometry, and algorithms , 2013, IEEE Signal Processing Magazine.
[14] Arindam Banerjee,et al. Bregman Alternating Direction Method of Multipliers , 2013, NIPS.
[15] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[16] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[17] D. Balding,et al. Structured Regularizers for High-Dimensional Problems : Statistical and Computational Issues , 2014 .
[18] Richard G. Baraniuk,et al. Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..
[19] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[20] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[21] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[22] Ion Necoara,et al. Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC , 2013, SIAM J. Control. Optim..
[23] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[24] Marc Teboulle,et al. Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..
[25] Kim-Chuan Toh,et al. On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .
[26] Xiaoming Yuan,et al. Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems , 2013, 1305.0546.
[27] Yunmei Chen,et al. An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..
[28] Marc Teboulle,et al. A fast dual proximal gradient algorithm for convex minimization and applications , 2014, Oper. Res. Lett..
[29] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[30] Renato D. C. Monteiro,et al. Iteration-complexity of first-order augmented Lagrangian methods for convex programming , 2015, Mathematical Programming.
[31] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[32] Wotao Yin,et al. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..