Constrained convex minimization via model-based excessive gap

We introduce a model-based excessive gap technique to analyze first-order primal-dual methods for constrained convex minimization. As a result, we construct first-order primal-dual methods with optimal convergence rates on the primal objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-center selection strategy, our framework subsumes the augmented Lagrangian, alternating direction, and dual fast-gradient methods as special cases, where our rates apply.

[1]  V. Cevher,et al.  A Primal-Dual Algorithmic Framework for Constrained Convex Minimization , 2014, 1406.5403.

[2]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[3]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[4]  A. Auslender Optimisation : méthodes numériques , 1976 .

[5]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[6]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[7]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[8]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[9]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[10]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[11]  Yurii Nesterov,et al.  Excessive Gap Technique in Nonsmooth Convex Minimization , 2005, SIAM J. Optim..

[12]  Alexander G. Gray,et al.  Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[13]  Volkan Cevher,et al.  Convexity in Source Separation : Models, geometry, and algorithms , 2013, IEEE Signal Processing Magazine.

[14]  Arindam Banerjee,et al.  Bregman Alternating Direction Method of Multipliers , 2013, NIPS.

[15]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[16]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[17]  D. Balding,et al.  Structured Regularizers for High-Dimensional Problems : Statistical and Computational Issues , 2014 .

[18]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[19]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[20]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[21]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[22]  Ion Necoara,et al.  Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC , 2013, SIAM J. Control. Optim..

[23]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[24]  Marc Teboulle,et al.  Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..

[25]  Kim-Chuan Toh,et al.  On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .

[26]  Xiaoming Yuan,et al.  Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems , 2013, 1305.0546.

[27]  Yunmei Chen,et al.  An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..

[28]  Marc Teboulle,et al.  A fast dual proximal gradient algorithm for convex minimization and applications , 2014, Oper. Res. Lett..

[29]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[30]  Renato D. C. Monteiro,et al.  Iteration-complexity of first-order augmented Lagrangian methods for convex programming , 2015, Mathematical Programming.

[31]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[32]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..