Fluoride based electrode materials for advanced energy storage devices

Energy storage and conversion have become a prime area of research to address both the societal concerns regarding the environment and pragmatic applications such as the powering of an ever increasing cadre of portable electronic devices. This paper reviews the use of fluoride based electrode materials in energy storage devices. The majority of the energy storage and conversion applications for fluorine based materials resides in present and future lithium battery chemistries. The use of fluorides either as coatings or in the formation of oxyfluorides has resulted in a marked increase of the stability and morphological development of electrodes for use in nonaqueous lithium and lithium-ion batteries. Pure fluorides, despite their intrinsic insulative properties, have demonstrated the capability to exhibit exceptional energy densities and have the potential to open the door to future high energy lithium battery technology.

[1]  Glenn G. Amatucci,et al.  Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries , 2003 .

[2]  Vinay Gupta,et al.  Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine , 2000 .

[3]  J. Son,et al.  New investigation of fluorine-substituted spinel LiMn2O4−xFx by using sol–gel process , 2005 .

[4]  A. Hamwi Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications , 1996 .

[5]  Glenn G. Amatucci,et al.  Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction , 2005 .

[6]  S. Panero,et al.  Nonaqueous Batteries with BiF3 Cathodes , 1978 .

[7]  Xiaofang Yang,et al.  New approaches to the design of polymer and liquid electrolytes for lithium batteries , 2000 .

[8]  Meiten Koh,et al.  Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries , 2002 .

[9]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[10]  K. Amine,et al.  Layered Li(Li0.2Ni0.15 + 0.5zCo0.10Mn0.55 − 0.5z)O2 − zFz cathode materials for Li-ion secondary batteries , 2005 .

[11]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[12]  S. Yamada,et al.  Synthesis and electrochemical properties for LiNiO2 substituted by other elements , 1997 .

[13]  K. Amine,et al.  Electrochemical and ex situ x-ray study of Li(Li{sub 0.2}Ni{sub 0.2}Mn{sub 0.6})O{sub 2} cathode material for Li secondary batteries. , 2003 .

[14]  R. Yazami A new graphite fluoride compound as electrode material for lithium intercalation in solid state cells , 1988 .

[15]  Hyung-Wook Ha,et al.  Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries , 2006 .

[16]  K. Amine,et al.  Effect of fluorine on the electrochemical properties of layered Li(Ni 0.5Mn 0.5)O 2 cathode material , 2005 .

[17]  S. Yamada,et al.  Synthesis and charge–discharge properties of Li1+xNi1−x−yCoyO2−zFz , 1999 .

[18]  Yang‐Kook Sun,et al.  Structural and electrochemical study of Li–Al–Mn–O–F spinel material for lithium secondary batteries , 2005 .

[19]  Gholam-Abbas Nazri,et al.  Solid state batteries : materials design and optimization , 1994 .

[20]  Y. S. Lee,et al.  Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2−xFx prepared by solid state reaction , 2006 .

[21]  K. Amine,et al.  Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode , 2006 .

[22]  P. Touzain,et al.  Generateurs electrochimiques lithium/composes d'insertion du graphite avec FeCl3, CuCl3, MnCl2 et CoCl2 , 1983 .

[23]  Jeremy Barker,et al.  Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F , 2005 .

[24]  E. G. Hope,et al.  Fluorination of buckminsterfullerene , 1991 .

[25]  C. Yoon,et al.  Effect of Fluorine on the Electrochemical Properties of Layered Li [ Ni0.43Co0.22Mn0.35 ] O2 Cathode Materials via a Carbonate Process , 2005 .

[26]  J. Dahn,et al.  Influence of LiF Additions on Li [ Ni x Co1 − 2x Mn x ] O 2 Materials Sintering, Structure, and Lithium Insertion Properties , 2004 .

[27]  Jianling Li,et al.  Surface fluorination and electrochemical behavior of petroleum cokes graphitized at medium and high temperatures for secondary lithium battery , 2005 .

[28]  Jeff Dahn,et al.  Hysteresis during Lithium Insertion in Hydrogen‐Containing Carbons , 1996 .

[29]  A. Manthiram,et al.  Superior Capacity Retention Spinel Oxyfluoride Cathodes for Lithium-Ion Batteries , 2006 .

[30]  Glenn G. Amatucci,et al.  Optimization of Insertion Compounds Such as LiMn2 O 4 for Li-Ion Batteries , 2002 .

[31]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[32]  Z. Mazej,et al.  Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite , 2004 .

[33]  Klaus Brandt,et al.  Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells , 2000 .

[34]  K. Abraham Recent developments in secondary lithium battery technology , 1985 .

[35]  Shu-juan Bao,et al.  Electrochemical properties and synthesis of LiAl0.05Mn1.95O3.95F0.05 by a solution-based gel method for lithium secondary battery , 2005 .

[36]  A. Hamwi,et al.  Inorganic Fluorides - Fullerenes Compounds , 1998 .

[37]  Masayuki Takashima,et al.  Surface fluorination of the cathode active materials for lithium secondary battery , 2004 .

[38]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[39]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[40]  Yang‐Kook Sun,et al.  Improvement of High-Voltage Cycling Behavior of Surface-Modified Li [ Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3 ] O2 Cathodes by Fluorine Substitution for Li-Ion Batteries , 2005 .

[41]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[42]  S. Yonezawa,et al.  Effect of LiF addition at preparation of LiCoO2 on its properties as an active material of lithium secondary battery , 1998 .

[43]  C. Delmas,et al.  The cycling properties of the LixNi1-yCoyO2 electrode , 1993 .

[44]  A. Hamwi,et al.  Perfluorofullerenes: Characterization and structural aspects , 1996 .

[45]  C. Delmas,et al.  Effects of Manganese Substitution for Nickel on the Structural and Electrochemical Properties of LiNiO2 , 2003 .

[46]  T. Ohzuku,et al.  Lithium insertion material of LiNi 1/2Mn 1/2O 2 for advanced lithium-ion batteries , 2003 .

[47]  C. Labrugère,et al.  A new single molecular precursor route to fluorine-doped nanocrystalline tin oxide anodes for lithium batteries , 2001 .

[48]  J. P. Remeika,et al.  A Method for Growing Barium Titanate Single Crystals , 1954 .

[49]  Jeremy Barker,et al.  Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4 F , 2003 .

[50]  G. Amatucci,et al.  The Electrochemistry of Zn3 N 2 and LiZnN A Lithium Reaction Mechanism for Metal Nitride Electrodes , 2002 .

[51]  Patrick Willmann,et al.  Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials , 1996 .

[52]  J. Lee,et al.  Lithium nickel oxyfluoride (Li1−zNi1+zFyO2−y) and lithium magnesium nickel oxide (Li1−z(MgxNi1−x)1+zO2) cathodes for lithium rechargeable batteries: II. Electrochemical investigations , 2001 .

[53]  Seung‐Taek Myung,et al.  Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2−zFz as lithium intercalation material , 2005 .

[54]  Vinay Gupta,et al.  Electrochemical properties and structures of surface-fluorinated graphite for the lithium ion secondary battery , 2002 .

[55]  Jaephil Cho,et al.  Enhancement of the electrochemical properties of o-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions , 2006 .

[56]  N. Watanabe,et al.  Catholic discharge of graphite fluoride, (CF)n, prepared from several carbon materials, in lithium organic electrolyte batteries , 1980 .

[57]  Jianling Li,et al.  Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery , 2005 .

[58]  Tsuyoshi Nakajima,et al.  Electrochemical characteristics and structures of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries , 2001 .

[59]  J. Cousseins,et al.  Graphite fluorides prepared at room temperature 1. Synthesis and characterization , 1988 .

[60]  E. Peled,et al.  Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation , 1996 .

[61]  J. Prakash,et al.  Synthesis and Electrochemical Properties of Li [ Ni1 / 3Co1 / 3Mn ( 1 / 3 − x ) Mg x ] O 2 − y F y via Coprecipitation , 2004 .

[62]  I. Davidson,et al.  Microwave Synthesis of Li1.025Mn1.975 O 4 and Li1 + x Mn2 − x O 4 − y F y ( x = 0.05 , 0.15 ; y = 0.05 , 0.1 ) , 2000 .

[63]  R. Yazami,et al.  Hybrid-type graphite fluoride as cathode material in primary lithium batteries , 2004 .

[64]  Tsuyoshi Nakajima,et al.  Surface-fluorinated graphite anode materials for Li-ion batteries , 2005 .

[65]  中嶌 剛,et al.  Fluorinated materials for energy conversion , 2005 .

[66]  Jianling Li,et al.  Surface structure and electrochemical properties of surface-fluorinated petroleum cokes for lithium ion battery , 2004 .

[67]  T. Nakajima,et al.  Electrochemical behavior of surface-fluorinated graphite , 1999 .

[68]  T. Nakajima,et al.  Electrochemical reactions of surface-fluorinated petroleum coke electrodes in organic solvents , 2006 .

[69]  Z. Wen,et al.  Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y , 2005 .

[70]  T. Nakajima,et al.  Electrochemical properties of fluorinated fullerene C60 , 1996 .

[71]  J. Tarascon,et al.  Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution , 1999 .

[72]  J. Dahn,et al.  Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins , 1995 .

[73]  Jeremy Barker,et al.  A Symmetrical Lithium-Ion Cell Based on Lithium Vanadium Fluorophosphate, LiVPO4F , 2005 .

[74]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[75]  S. Kawasaki,et al.  Solid-state lithium cells based on fluorinated fullerene cathodes , 1996 .

[76]  G. Amatucci,et al.  Soft‐Chemistry Synthesis and Characterization of Bismuth Oxyfluorides and Ammonium Bismuth Fluorides , 2006 .

[77]  Hajime Arai,et al.  Cathode performance and voltage estimation of metal trihalides , 1997 .

[78]  J. Lee,et al.  Lithium nickel oxyfluoride (Li1−zNi1+zFyO2−y) and lithium magnesium nickel oxide (Li1−z(MgxNi1−x)1+z O2) cathodes for lithium rechargeable batteries: Part I. Synthesis and characterization of bulk phases , 2001 .

[79]  Yang‐Kook Sun,et al.  Synthetic optimization of Li[Ni 1/3Co 1/3Mn 1/3]O 2 via co-precipitation , 2004 .

[80]  De-cheng Li,et al.  Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 , 2004 .

[81]  Tsuyoshi Nakajima,et al.  A new structure model of graphite oxide , 1988 .

[82]  J. Barker,et al.  Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells , 2005 .

[83]  W. Tiedemann Electrochemical Behavior of the Fluorographite Electrode in Nonaqueous Media , 1974 .

[84]  Y. Koyama,et al.  New Fluoride Cathodes for Rechargeable Lithium Batteries , 2000 .

[85]  Shu-juan Bao,et al.  Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution , 2006 .

[86]  Jeremy Barker,et al.  A Comparative Investigation of the Li Insertion Properties of the Novel Fluorophosphate Phases, NaVPO4 F and LiVPO4 F , 2004 .

[87]  G. Amatucci,et al.  Reversible Conversion Reactions with Lithium in Bismuth Oxyfluoride Nanocomposites , 2006 .

[88]  Lisa C. Klein,et al.  Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites , 2006 .

[89]  Jun-ichi Yamaki,et al.  Fluoride phosphate li2copo4f as a high-voltage cathode in li-ion batteries , 2005 .

[90]  A. Hamwi,et al.  Transition metals oxyfluorides intercalated into graphite: new synthesis route and electrochemical properties , 2001 .

[91]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[92]  Wu Haoqing,et al.  Electrochemical studies of substituted spinel LiAlyMn2−yO4−zFz for lithium secondary batteries , 2001 .

[93]  S. Lerner,et al.  The Development of a Primary Nonaqueous Lithium/Mercuric Fluoride Cell , 1970 .

[94]  A. Hamwi,et al.  C60-Inorganic fluorides intercalation compounds: some formation condition data and their electrochemical behavior in lithium cell systems , 2001 .

[95]  T. Nakajima,et al.  Kinetic Study of Discharge Reaction of Lithium‐Graphite Fluoride Cell , 1988 .

[96]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[97]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[98]  J. Cousseins,et al.  Graphite fluorides prepared at room temperature 2. A very good electrochemical behaviour as cathode material in lithium non-aqueous electrolyte cell , 1989 .

[99]  N. Watanabe Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries , 1980 .

[100]  Jeremy Barker,et al.  Hybrid-Ion A Lithium-Ion Cell Based on a Sodium Insertion Material , 2006 .