Transmitter Receptor Distribution in the Human Brain

Transmitter receptors are key molecules of signal processing in the brain. They occur at different densities between different cortical regions and layers, as well as subcortical nuclei. The differences enable mapping of these structures based on the density of a single or multiple receptors in each structure. We summarize data of selected receptor types of classical transmitter systems in the human cerebral cortex, cerebellum, hippocampus, amygdala, basal ganglia, and thalamus. A short review of developmental and age-related changes is also provided. Finally, we show the relevance of multireceptor analyses (receptor fingerprints) for the characterization of functional systems at the molecular level.

[1]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[2]  Anat Biegon,et al.  Autoradiographic analysis of serotonin 5-HT1A receptor binding in the human brain postmortem: effects of age and alcohol , 1991, Brain Research.

[3]  Mary Johnson,et al.  Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[4]  J. Palacios,et al.  Mapping dopamine receptors in the human brain. , 1988, Journal of neural transmission. Supplementum.

[5]  John O'Brien,et al.  Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease , 2003, Journal of Chemical Neuroanatomy.

[6]  Anat Biegon,et al.  Autoradiographic analysis of [3H]ketanserin binding in the human brain postmortem: effect of suicide , 1990, Brain Research.

[7]  Richard L. M. Faull,et al.  NMDA and kainic acid receptors have a complementary distribution to AMPA receptors in the human cerebellum , 1990, Brain Research.

[8]  B. Winblad,et al.  Divergent changes in D-1 and D-2 dopamine binding sites in human brain during aging , 1987, Neurobiology of Aging.

[9]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[10]  J. Rinne Muscarinic and dopaminergic receptors in the aging human brain , 1987, Brain Research.

[11]  B. Winblad,et al.  Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia , 1992, Journal of neuroscience research.

[12]  Angela D. Friederici,et al.  Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints , 2015, Cortex.

[13]  B. Vogt,et al.  Laminar Alterations in γ‐Aminobutyric AcidA, Muscarinic, and β Adrenoceptors and Neuron Degeneration in Cingulate Cortex in Alzheimer's Disease , 1991 .

[14]  R. Porter,et al.  What is area 3a? , 1980, Brain Research Reviews.

[15]  Sid Gilman,et al.  Autoradiographic localization of inhibitory and excitatory amino acid neurotransmitter receptors in human normal and olivopontocerebellar atrophy cerebellar cortex , 1990, Brain Research.

[16]  Katrin Amunts,et al.  Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus , 2013, Brain Structure and Function.

[17]  H. Tohgi,et al.  Alterations with aging and ischemia in nicotinic acetylcholine receptor subunits α 4 and β 2 messenger RNA expression in postmortem human putamen. Implications for susceptibility to parkinsonism , 1998, Brain Research.

[18]  Paul G. Ince,et al.  The distribution of excitatory amino acid receptors in the normal human midbrain and basal ganglia with implications for Parkinson's disease: a quantitative autoradiographic study using [3H]MK-801, [3H]glycine, [3H]CNQX and [3H]kainate , 1994, Brain Research.

[19]  Elliott Richelson,et al.  Studies on Muscarinic Binding Sites in Human Brain Identified with [3H]Pirenzepine , 1986, Journal of neurochemistry.

[20]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[21]  Y. Rossetti,et al.  No double-dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations , 2006, Neuropsychologia.

[22]  H. Wikström,et al.  Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635 , 1997, Brain Research.

[23]  Mary Johnson,et al.  Autoradiographic comparison of cholinergic and other transmitter receptors in the normal human hippocampus , 1993, Hippocampus.

[24]  D. Graham,et al.  5HT2 receptors in dementia of the Alzheimer type: A quantitative autoradiographic study of frontal cortex and hippocampus , 1990 .

[25]  I. Kanazawa,et al.  Neurotransmitter receptors in olivopontocerebellar atrophy , 1986, Neurology.

[26]  A. Schleicher,et al.  Cyto- and Myeloarchitecture of Human Visual Cortex and the Periodical GABAA Receptor Distribution , 1993 .

[27]  A M Graybiel,et al.  Autoradiographic localization and biochemical characteristics of M1 and M2 muscarinic binding sites in the striatum of the cat, monkey, and human , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  A. Biegon,et al.  Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide. , 1990, Archives of general psychiatry.

[29]  S. Haber,et al.  The Basal Ganglia , 2012 .

[30]  Yehezkel Ben-Ari,et al.  Autoradiographic localization of kainic acid binding sites in the human hippocampus , 1985, Brain Research.

[31]  R. Conley,et al.  Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. , 2000, The American journal of psychiatry.

[32]  P. Ward,et al.  Selective Alterations in Ionotropic Glutamate Receptors in the Anterior Cingulate Cortex in Schizophrenia , 2002, Neuropsychopharmacology.

[33]  D Wyper,et al.  Nicotinic Acetylcholine Receptor Distribution in Alzheimer's Disease, Dementia with Lewy Bodies, Parkinson's Disease, and Vascular Dementia: In Vitro Binding Study Using 5-[125I]-A-85380 , 2004, Neuropsychopharmacology.

[34]  J. Marshall,et al.  Striosomal organization of cholinergic and dopaminergic uptake sites and cholinergic M1 receptors in the adult human striatum: a quantitative receptor autoradiographic study , 1990, Brain Research.

[35]  Margaret A. Johnson,et al.  Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. , 1997, Brain research. Developmental brain research.

[36]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[37]  Á. Pazos,et al.  α2-Adrenoceptors in human forebrain: autoradiographic visualization and biochemical parameters using the agonist [3H]UK-14304 , 1988, Brain Research.

[38]  Karl Zilles,et al.  Cyto‐ and receptor architecture of area 32 in human and macaque brains , 2013, The Journal of comparative neurology.

[39]  Á. Pazos,et al.  Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer's disease , 1997, Synapse.

[40]  R. Balázs,et al.  Biochemical development of the human brain. III. Benzodiazepine receptors, free Y‐aminobutyrate (GABA) and other amino acids , 1982, Journal of neuroscience research.

[41]  Jeremy M Crook,et al.  Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation , 2000, Biological Psychiatry.

[42]  J. Meador-Woodruff,et al.  Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder , 2001, Brain Research Bulletin.

[43]  G. Reynolds,et al.  5‐Hydroxytryptamine (5‐HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases , 1995, British journal of pharmacology.

[44]  K. Zilles,et al.  Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex , 2007, Brain Structure and Function.

[45]  J. Mcculloch,et al.  Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum , 1990, Annals of neurology.

[46]  Á. Pazos,et al.  Autoradiographic distribution of 5‐HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species , 2004, British journal of pharmacology.

[47]  Richard L. M. Faull,et al.  Autoradiographic visualisation of [3H]DTG binding to σ receptors, [3H]TCP binding sites, and l-[3H]glutamate binding to NMDA receptors in human cerebellum , 1991, Neuroscience Letters.

[48]  D. Coon The Human Nervous System 2nd ed , 1975 .

[49]  A. Schleicher,et al.  Receptor architecture of human cingulate cortex: Evaluation of the four‐region neurobiological model , 2009, Human brain mapping.

[50]  Robert H. Perry,et al.  Autoradiographic distribution of [3H]nicotine binding in human cortex: Relative abundance in subicular complex , 1992, Journal of Chemical Neuroanatomy.

[51]  Karl Zilles,et al.  ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .

[52]  G. Vauquelin,et al.  Regional Distribution of α2A‐and α2B‐Adrenoceptor Subtypes in Postmortem Human Brain , 1992 .

[53]  B. Dean,et al.  Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. , 2001, The American journal of psychiatry.

[54]  J. Palacios,et al.  Benzodiazepine receptor sites in the human brain: Autoradiographic mapping , 1988, Neuroscience.

[55]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[56]  R. Balázs,et al.  Biochemical development of the human brain. II. Some parameters of the GABA-ergic system. , 1978, Developmental neuroscience.

[57]  D G Trist,et al.  [3H]MK-801 binding and the mRNA for the NMDAR1 subunit of the NMDA receptor are differentially distributed in human and rat forebrain. , 1998, Brain research. Molecular brain research.

[58]  Mary Johnson,et al.  Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain , 2002, Journal of Chemical Neuroanatomy.

[59]  S. Gauthier,et al.  Differential Alteration of Various Cholinergic Markers in Cortical and Subcortical Regions of Human Brain in Alzheimer's Disease , 1988, Journal of neurochemistry.

[60]  David G. Morgan,et al.  Serotonin-2 binding sites in human frontal cortex and hippocampus. Selective loss of S-2A sites with age , 1984, Brain Research.

[61]  G. Reynolds,et al.  (3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients , 2005, Journal of Neural Transmission.

[62]  A. Schleicher,et al.  Organization of the Human Inferior Parietal Lobule Based on Receptor Architectonics , 2012, Cerebral cortex.

[63]  J. Palacios,et al.  Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: Brainstem , 1984, Neuroscience.

[64]  Abraham Weizman,et al.  Unaltered α2-noradrenergic/imidazoline receptors in suicide victims: a postmortem brain autoradiographic analysis , 2000, European Neuropsychopharmacology.

[65]  Anat Biegon,et al.  Autoradiographic analysis of age-dependent changes in serotonin 5-HT2 receptors of the human brain postmortem , 1990, Brain Research.

[66]  Patrick Vanderheyden,et al.  Human M1-, M2- and M3-muscarinic cholinergic receptors: Binding characteristics of agonists and antagonists , 1990, Journal of the Neurological Sciences.

[67]  Frank Roels,et al.  Autoradiographic localization of D1 and D2 dopamine receptors in the human brain , 1988, Neuroscience Letters.

[68]  C. Tanaka,et al.  GABAA receptor but not muscarinic receptor density was decreased in the brain of patients with Parkinson's disease. , 1988, Japanese journal of pharmacology.

[69]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[70]  Jianjun Sun,et al.  Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain , 2012, PloS one.

[71]  J. Penney,et al.  Excitatory and inhibitory amino acid binding sites in human dentate nucleus , 1991, Brain Research.

[72]  Xu-Feng Huang,et al.  Increased density of GABAA receptors in the superior temporal gyrus in schizophrenia , 2005, Experimental Brain Research.

[73]  Ariel Y Deutch,et al.  Distribution of Dopamine D2-Like Receptors in the Human Thalamus: Autoradiographic and PET Studies , 2004, Neuropsychopharmacology.

[74]  M R Crompton,et al.  Beta-adrenoceptors in human brain labelled with [3H]dihydroalprenolol and [3H]CGP 12177. , 1989, European journal of pharmacology.

[75]  J DeFelipe,et al.  Colocalization of glutamate ionotropic receptor subunits in the human temporal neocortex. , 2000, Cerebral cortex.

[76]  Nicola Palomero-Gallagher,et al.  Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: Relations to visual and somatosensory regions , 2005, NeuroImage.

[77]  J. Kleinman,et al.  Decreased density of human striatal dopamine uptake sites with age. , 1986, European Journal of Pharmacology.

[78]  J. Palacios,et al.  Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites , 1986, Brain Research.

[79]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[80]  Wolfgang Walkowiak,et al.  A comparative phylogenetic study of the distribution of cerebellar GABAA/benzodiazepine receptors using radioligands and monoclonal antibodies , 1988, Brain Research.

[81]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[82]  Paul G. Ince,et al.  A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex , 1994, Brain Research.

[83]  Robert M. Kessler,et al.  Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride , 1993, Brain Research.

[84]  J. Penney,et al.  NMDA, AMPA, and benzodiazepine binding site changes in Alzheimer's disease visual cortex , 1993, Neurobiology of Aging.

[85]  J. Penney,et al.  Neurochemical studies of human narcolepsy: alpha-adrenergic receptor autoradiography of human narcoleptic brain and brainstem. , 1994, Sleep.

[86]  J. Penney,et al.  Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of huntington's disease , 1991, Annals of neurology.

[87]  A. Nordberg,et al.  Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined by [3H](-)nicotine, [3H]cytisine and [3H]epibatidine in vitro autoradiography , 1998, Neuroscience.

[88]  J. Palacios,et al.  Receptor localization in the human hypothalamus. , 1992, Progress in brain research.

[89]  K. Davis,et al.  Abnormal Kainate Receptor Expression in Prefrontal Cortex in Schizophrenia , 2001, Neuropsychopharmacology.

[90]  J. Palacios,et al.  Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites , 1986, Brain Research.

[91]  E. Perry,et al.  Thalamic D2 receptors in dementia with Lewy bodies, Parkinson's disease, and Parkinson's disease dementia. , 2007, The international journal of neuropsychopharmacology.

[92]  J. Marshall,et al.  Human striatal dopamine receptors are organized in compartments. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. Neve,et al.  Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. , 1991, The Journal of pharmacology and experimental therapeutics.

[94]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[95]  Christer Halldin,et al.  Dopamine D2 receptors in the rat, monkey and the post-mortem human hippocampus. An autoradiographic study using the novel D2-selective ligand 125I-NCQ 298 , 1991, Neuroscience Letters.

[96]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[97]  Paul J. Harrison,et al.  [3H]WAY–100635 for 5–HT1A receptor autoradiography in human brain: a comparison with [3H]8–OH–DPAT and demonstration of increased binding in the frontal cortex in schizophrenia , 1997, Neurochemistry International.

[98]  J. Palacios,et al.  Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.

[99]  A. Mackinnon,et al.  Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. , 2003, Bipolar disorders.

[100]  E. Hellström‐Lindahl,et al.  Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging , 2000, Behavioural Brain Research.

[101]  C D Marsden,et al.  Altered Muscarinic and Nicotinic Receptor Densities in Cortical and Subcortical Brain Regions in Parkinson's Disease , 1993, Journal of neurochemistry.

[102]  José Guimón,et al.  Relationships between β- and α2-adrenoceptors and G coupling proteins in the human brain: effects of age and suicide , 2001, Brain Research.

[103]  A. Biegon,et al.  Developmental pattern of muscarinic receptors in normal and Down's syndrome fetal brain — An autoradiographic study , 1991, Neuroscience Letters.

[104]  Donatella Marazziti,et al.  Distribution of [3H]GR65630 Binding in Human Brain Postmortem , 2001, Neurochemical Research.

[105]  D J Healy,et al.  Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. , 2000, The American journal of psychiatry.

[106]  Brian Dean,et al.  5-HT2A and muscarinic receptors in schizophrenia: a postmortem study , 2005, Neuroscience Letters.

[107]  A. Biegon,et al.  Hippocampal Glutamate NMDA Receptor Loss Tracks Progression in Alzheimer’s Disease: Quantitative Autoradiography in Postmortem Human Brain , 2013, PloS one.

[108]  J. Noga,et al.  Further postmortem autoradiographic studies of AMPA receptor binding in schizophrenia , 2002, Synapse.

[109]  Y. Ben-Ari,et al.  Development of high affinity kainate binding sites in human and rat hippocampi , 1986, Brain Research.

[110]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[111]  H. Tohgi,et al.  Age-related changes in nicotinic acetylcholine receptor subunits α4 and β2 messenger RNA expression in postmortem human frontal cortex and hippocampus , 1998, Neuroscience Letters.

[112]  J. Palacios,et al.  Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies , 1986, Brain Research.

[113]  João C. Villares,et al.  Age-Related Changes in the N-Methyl- d -aspartate Receptor Binding Sites within the Human Basal Ganglia , 2001, Experimental Neurology.

[114]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[115]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[116]  V Menon,et al.  Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. , 2009, Cerebral cortex.

[117]  Sid Gilman,et al.  Two types of quisqualate receptors are decreased in human olivopontocerebellar atrophy cerebellar cortex , 1990, Brain Research.

[118]  B. Dean,et al.  A change in the density of [(3)H]flumazenil, but not [(3)H]muscimol binding, in Brodmann's Area 9 from subjects with bipolar disorder. , 2001, Journal of affective disorders.

[119]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[120]  Karl Zilles,et al.  Interictal-like network activity and receptor expression in the epileptic human lateral amygdala. , 2011, Brain : a journal of neurology.

[121]  R. Mailman,et al.  Developmental Regulation of the Dopamine D1 Receptor in Human Caudate and Putamen , 1999, Neuropsychopharmacology.

[122]  K. Amunts,et al.  Receptor mapping: architecture of the human cerebral cortex , 2009, Current opinion in neurology.

[123]  Anat Biegon,et al.  Fetal human brain exhibits a prenatal peak in the density of serotonin 5-HT1A receptors , 1991, Neuroscience Letters.

[124]  R. Faull,et al.  Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine,l-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites , 1989, Neuroscience.

[125]  S S Stensaas,et al.  Autoradiographic Evidence of [3H]SCH 23390 Binding Site; in Human Prefrontal Cortex (Brodmann's Area 9) , 1987, Journal of neurochemistry.

[126]  B. H. Choi,et al.  Density and distribution of excitatory amino acid receptors in the developing human fetal brain: A quantitative autoradiographic study , 1992, Experimental Neurology.

[127]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[128]  P. Slater,et al.  High affinity serotonin binding sites in human brain: a comparison of cerebral cortex and basal ganglia , 2005, Journal of Neural Transmission.

[129]  B. Vogt,et al.  Anterior Cingulate Cortex and the Medial Pain System , 1993 .

[130]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[131]  E K Perry,et al.  Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. , 1993, Brain research. Developmental brain research.

[132]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[133]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.