SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain

Topographic correction based on sun-canopy-sensor (SCS) geometry is more appropriate than terrain-based corrections in forested areas since SCS preserves the geotropic nature of trees (vertical growth) regardless of terrain, view, and illumination angles. However, in some terrain orientations, SCS experiences an overcorrection problem similar to other simple photometric functions. To address this problem, we propose a new SCS+C correction that accounts for diffuse atmospheric irradiance based on the C-correction. A rigorous, comprehensive, and flexible method for independent validation based on canopy geometric optical reflectance models is also introduced as an improvement over previous validation approaches, and forms a secondary contribution of this paper. Results for a full range of slopes, aspects, and crown closures showed SCS+C provided improved corrections compared to the SCS and four other photometric approaches (cosine, C, Minnaert, statistical-empirical) for a Rocky Mountain forest setting in western Canada. It was concluded that SCS+C should be considered for topographic correction of remote sensing imagery in forested terrain.

[1]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[3]  Ryan L. Johnsonl,et al.  A Modeled-Based Sub-Pixel Scale Mountain Terrain Normalization Algorithm for Improved LAI Estimation from Airborne CASI Imagery , 2007 .

[4]  Frank W. Davis,et al.  Thematic mapper analysis of tree cover in semiarid woodlands using a model of canopy shadowing , 1991 .

[5]  Alan H. Strahler,et al.  Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model , 1994, IEEE Trans. Geosci. Remote. Sens..

[6]  P. Deschamps,et al.  Evaluation of topographic effects in remotely sensed data , 1989 .

[7]  Fraser Gemmell,et al.  An Investigation of Terrain Effects on the Inversion of a Forest Reflectance Model , 1998 .

[8]  S. Sandmeier,et al.  Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment , 1993 .

[9]  T. Lin,et al.  The Lambertian assumption and Landsat data. , 1980 .

[10]  Derek R. Peddle,et al.  A Comparison of Spectral Mixture Analysis and Ten Vegetation Indices for Estimating Boreal Forest Biophysical Information from Airborne Data , 2001 .

[11]  D. Civco Topographic normalization of landsat thematic mapper digital imagery , 1989 .

[12]  M. Vincini,et al.  Multitemporal evaluation of topographic normalization methods on deciduous forest TM data , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  J. Colby,et al.  Topographic Normalization in Rugged Terrain , 1991 .

[14]  Jeffrey D. Colby,et al.  Land cover classification using Landsat TM imagery in the tropical highlands : the influence of anisotropic reflectance , 1998 .

[15]  Daniel S. Kimes,et al.  Modeling the Effects of Various Radiant Transfers in Mountainous Terrain on Sensor Response , 1981, IEEE Transactions on Geoscience and Remote Sensing.

[16]  David Riaño,et al.  Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  S. Ekstrand,et al.  Landsat TM-based forest damage assessment : correction for topographic effects , 1996 .

[18]  F. Gemmell,et al.  Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site , 1995 .

[19]  Michael A. Wulder,et al.  Structural change detection in a disturbed conifer forest using a geometric optical reflectance model in multiple-forward mode , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Strahler,et al.  Recent advances in geometrical optical modelling and its applications , 2000 .

[21]  D. Peddle Spectral Mixture Analysis and Geometric-Optical Reflectance Modeling of Boreal Forest Biophysical Structure , 1999 .

[22]  Alan R. Gillespie,et al.  A statistical approach for topographic correction of satellite images by using spatial context information , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  François Cavayas,et al.  Modelling and Correction of Topographic Effect Using Multi-Temporal Satellite Images , 1987 .

[24]  Karl Fred Huemmrich,et al.  Remote Sensing of Forest Biophysical Structure Using Mixture Decomposition and Geometric Reflectance Models , 1995 .

[25]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[26]  C. Conese Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain model , 1993 .

[27]  T. Tokola,et al.  Use of topographic correction in Landsat TM-based forest interpretation in Nepal , 2001 .

[28]  C. Justice,et al.  Application of digital terrain data to quantify and reduce the topographic effect on Landsat data , 1981 .

[29]  Derek R. Peddle,et al.  Spectral Mixture Analysis of Airborne Remote Sensing Imagery for Improved Prediction of Leaf Area Index in Mountainous Terrain, Kananaskis Alberta , 2000 .

[30]  Stuart R. Phinn,et al.  Determining forest structural attributes using an inverted geometric-optical model in mixed Eucalypt , 2000 .

[31]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[32]  Klaus I. Itten,et al.  Geometric and radiometric correction of TM data of mountainous forested areas , 1993, IEEE Trans. Geosci. Remote. Sens..

[33]  R. Latifovic,et al.  Large area forest classification and biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-Mode , 2004 .