Intermetallic magnetic nanoparticle precipitation by femtosecond laser fragmentation in liquid.

Intermetallic Nd(2)Fe(14)B nanoparticles with an average diameter of 30 nm, which are smaller than a theoretical single magnetic domain size of 220 nm, were successfully prepared by the femtosecond laser fragmentation in liquid. The self-passivating amorphous carbon layer resulting from the decomposition of the surrounding solvent prevents the Nd(2)Fe(14)B nanoparticle from aggregation and oxidation. The coercivity of Nd(2)Fe(14)B nanoparticle increases with increase of the laser irradiation time, despite the reduction of crystallinity.

[1]  Peter G. Kazansky,et al.  Photo-conversion and evolution of one-dimensional Cu nanoparticles under femtosecond laser irradiation , 2008 .

[2]  S. Ram Synthesis, magnetic properties and formalism of magnetic properties of high-quality refined Nd2Fe14B powders for permanent magnet devices , 1997 .

[3]  M. Kawasaki,et al.  Laser fragmentation of water-suspended gold flakes via spherical submicroparticles to fine nanoparticles. , 2005, The journal of physical chemistry. B.

[4]  H. Cerva,et al.  Nanostructured Nd-Fe-B magnets with enhanced remanence , 1995 .

[5]  Mu-Tian Cheng,et al.  Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter. , 2008, Optics letters.

[6]  G. A. Shafeev,et al.  Laser induced synthesis of nanoparticles in liquids , 2006 .

[7]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[8]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[9]  H. J. Kim,et al.  Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br , 1997, Nature.

[10]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[11]  G. A. Shafeev,et al.  Silicon Nanoparticles Produced by Femtosecond Laser Ablation in Ethanol: Size Control, Structural Characterization, and Optical Properties , 2010 .

[12]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[13]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[14]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[15]  J. Livingston Magnetic domains in sintered Fe‐Nd‐B magnets , 1985 .

[16]  Iijima,et al.  Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon , 1998, Science.

[17]  Chen Chang,et al.  Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous , 2006 .

[18]  Eric Mazur,et al.  Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas , 2006 .

[19]  See Leang Chin,et al.  BAND-GAP DEPENDENCE OF THE ULTRAFAST WHITE-LIGHT CONTINUUM , 1998 .

[20]  T. Kondow,et al.  Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution , 2000 .

[21]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[22]  Eckhard Bill,et al.  Nanoengineering of a magnetically separable hydrogenation catalyst. , 2004, Angewandte Chemie.

[23]  Charles M. Lieber,et al.  One-dimensional nanostructures: Chemistry, physics & applications , 1998 .

[24]  Boris N. Chichkov,et al.  Properties of nanoparticles generated during femtosecond laser machining in air and water , 2007 .

[25]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[26]  M. Sagawa,et al.  Magnetic properties of rare-earth-iron-boron permanent magnet materials , 1985 .

[27]  K Miura,et al.  Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. , 2007, Optics express.

[28]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[29]  E. Snoeck,et al.  Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles , 2005, Nature materials.

[30]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[31]  Vladimir T. Tikhonchuk,et al.  Electrostatic mechanism of ablation by femtosecond lasers , 2002 .

[32]  Michel Meunier,et al.  Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins , 2003 .

[33]  Hui Chen,et al.  Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams , 2006 .

[34]  E. Kneller,et al.  Particle Size Dependence of Coercivity and Remanence of Single‐Domain Particles , 1963 .

[35]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[36]  Michel Meunier,et al.  Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. , 2004, Journal of the American Chemical Society.

[37]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[38]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[39]  Hiroshi Masuhara,et al.  Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent , 2002 .

[40]  Peter G. Kazansky,et al.  Photoconversion of Copper Flakes to Nanowires with Ultrashort Pulse Laser Irradiation , 2007 .

[41]  T. Perry,et al.  Laser surface heating of Nd-Fe-B, Nd-Fe-Co-B, and BaO-6Fe2O3 permanent magnets , 1993 .

[42]  U. Gösele,et al.  Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays , 2006 .