The GeMS/GSAOI Galactic Globular Cluster Survey (G4CS). II. Characterization of 47 Tuc with Bayesian Statistics
暂无分享,去创建一个
A. Dotter | T. Puzia | B. Miller | E. Carrasco | P. Stetson | S. Cassisi | S. Monty | M. Simunovic | B. Miller
[1] J. Ferguson,et al. Updated BaSTI Stellar Evolution Models and Isochrones. II. α-enhanced Calculations , 2020, 2012.10085.
[2] S. E. Persson,et al. The Cluster AgeS Experiment (CASE) – VIII. Age and distance of the Globular Cluster 47 Tuc from the analysis of two detached eclipsing binaries , 2020, 2001.01481.
[3] Z. Shao,et al. Gaia parallax of Milky Way globular clusters – A solution of mixture model , 2019, Monthly Notices of the Royal Astronomical Society.
[4] G. Fiorentino,et al. Unveiling the nature of Gemini multiconjugate adaptive optics system distortions , 2019, Monthly Notices of the Royal Astronomical Society.
[5] D. Bossini,et al. Age determination for 269 Gaia DR2 open clusters , 2019, Astronomy & Astrophysics.
[6] J. Anderson,et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters – XVII. Public Catalogue Release , 2018, Monthly Notices of the Royal Astronomical Society.
[7] Eleazar R. Carrasco,et al. The GeMS/GSAOI Galactic Globular Cluster Survey (G4CS). I. A Pilot Study of the Stellar Populations in NGC 2298 and NGC 3201 , 2018, The Astrophysical Journal.
[8] H. Richer,et al. Distances to the Globular Clusters 47 Tucanae and NGC 362 Using Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.
[9] S. Saracino,et al. On the Use of the Main-sequence Knee (Saddle) to Measure Globular Cluster Ages , 2018, The Astrophysical Journal.
[10] V. Ripepi,et al. The VMC survey. XXVIII. Improved measurements of the proper motion of the Galactic globular cluster 47 Tucanae , 2018, 1801.07738.
[11] L. Girardi,et al. New parsec data base of α-enhanced stellar evolutionary tracks and isochrones – I. Calibration with 47 Tuc (NGC 104) and the improvement on RGB bump , 2018, 1801.07137.
[12] J. Anderson,et al. Deep HST Imaging in 47 Tucanae: A Global Dynamical Model , 2017, 1710.10666.
[13] T. Fusco,et al. Optimal correction of distortion for high-angular-resolution images: Application to GeMS data , 2017, 1709.08567.
[14] J. Ferguson,et al. Constraints on the Distance Moduli, Helium, and Metal Abundances, and Ages of Globular Clusters from Their RR Lyrae and Non-variable Horizontal Branch Stars. II. Multiple Stellar Populations in 47 Tuc, M3, and M13 , 2017, 1706.05454.
[15] B. Chaboyer,et al. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting , 2017, 1703.01915.
[16] D. V. Dyk,et al. The ACS survey of Galactic globular clusters – XIV. Bayesian single-population analysis of 69 globular clusters , 2017, 1702.08856.
[17] F. Grundahl,et al. The age of 47 Tuc from self-consistent isochrone fits to colour–magnitude diagrams and the eclipsing member V69 , 2017, 1702.03421.
[18] R. Bernstein,et al. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES , 2016, 1611.02734.
[19] A. McConnachie,et al. Optimal Stellar Photometry for Multi-conjugate Adaptive Optics Systems Using Science-based Metrics , 2016, 1611.00422.
[20] E. Marchetti,et al. GeMS/GSAOI PHOTOMETRIC AND ASTROMETRIC PERFORMANCE IN DENSE STELLAR FIELDS , 2016, 1610.03489.
[21] D. V. Dyk,et al. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters – III. Analysis of 30 Clusters , 2016, 1609.01527.
[22] Santi Cassisi,et al. On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology , 2016, 1604.02874.
[23] A. McConnachie,et al. GeMS MCAO observations of the Galactic globular cluster NGC 2808: the absolute age , 2015, 1512.03194.
[24] Chile,et al. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. I. OVERVIEW OF THE PROJECT AND DETECTION OF MULTIPLE STELLAR POPULATIONS , 2014, 1410.4564.
[25] L. Althaus,et al. A Population Synthesis Study of the White Dwarf Cooling Sequence of 47 Tucanae , 2014, 1410.0536.
[26] M. Asplund,et al. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns , 2014, 1409.4694.
[27] Jessica R. Lu,et al. Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields , 2014, 1409.0719.
[28] Luca Casagrande,et al. Synthetic stellar photometry – I. General considerations and new transformations for broad-band systems , 2014, 1407.6095.
[29] Charles P. Cavedoni,et al. Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.
[30] Don A. VandenBerg,et al. The bifurcated age–metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy , 2013, 1309.0822.
[31] M. Schirmer,et al. THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.
[32] J. Anderson,et al. An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.
[33] S. Lucatello,et al. The Na-O anticorrelation in horizontal branch stars - III. 47 Tucanae and M 5 , 2012, 1210.4069.
[34] Eleazar R. Carrasco,et al. Results from the commissioning of the Gemini South Adaptive Optics Imager (GSAOI) at Gemini South Observatory , 2012, Other Conferences.
[35] J. Anderson,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF WHITE DWARFS IN 47 Tucanae: THE DISTANCE TO THE CLUSTER , 2011, 1112.1425.
[36] A. Dotter,et al. A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS , 2011, 1112.1426.
[37] J. Anderson,et al. The ACS survey of Galactic globular clusters. XII. Photometric binaries along the main sequence , 2011, 1111.0552.
[38] M. Bergemann. Ionization balance of Ti in the photospheres of the Sun and four late-type stars , 2011, 1101.0828.
[39] G. Clementini,et al. The VMC survey: I. Strategy and first data , 2010, 1012.5193.
[40] G. Piotto,et al. The helium spread in the globular cluster 47 Tuc , 2010, 1006.2024.
[41] S. Lucatello,et al. Properties of stellar generations in globular clusters and relations with global parameters , 2010, 1003.1723.
[42] S. Majewski,et al. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. EFFECTS OF ENVIRONMENT ON GLOBULAR CLUSTER GLOBAL MASS FUNCTIONS , 2010 .
[43] G. S. Burley,et al. THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc , 2009, 0910.4262.
[44] Garching,et al. Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.
[45] S. Lucatello,et al. Na-O Anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra , 2009, 0909.2938.
[46] Garching,et al. Na-O anticorrelation and HB - VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra , 2009, 0909.2941.
[47] Darko Jevremovic,et al. The Dartmouth Stellar Evolution Database , 2008, 0804.4473.
[48] A. Koch,et al. A NEW ABUNDANCE SCALE FOR THE GLOBULAR CLUSTER 47 Tuc , 2008, 0802.2103.
[49] A. McWilliam,et al. Globular Cluster Abundances from High-Resolution Integrated-Light Spectra. I. 47 Tuc , 2007, 0709.1964.
[50] S. Majewski,et al. The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without Previous Hubble Space Telescope Photometry , 2006, astro-ph/0612598.
[51] G. Meylan,et al. Hubble Space Telescope Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae , 2006, astro-ph/0607597.
[52] A. Pietrinferni,et al. A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006, astro-ph/0603721.
[53] Steven DeGennaro,et al. Inverting Color-Magnitude Diagrams to Access Precise Star Cluster Parameters: A Bayesian Approach , 2006, astro-ph/0603493.
[54] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[55] R. Rich,et al. VLT-UVES analysis of 5 giants in 47 Tucanae , 2005 .
[56] C. Benoist,et al. GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005, astro-ph/0501144.
[57] Gabe Bloxham,et al. Gemini South Adaptive Optics Imager (GSAOI) , 2004, SPIE Astronomical Telescopes + Instrumentation.
[58] A. Pietrinferni,et al. Color Transformations and Bolometric Corrections for Galactic Halo Stars: α-Enhanced versus Scaled-Solar Results , 2004, astro-ph/0408111.
[59] K. Freeman,et al. A Comprehensive Catalog of Variable Stars in the Field of 47 Tucanae , 2004, astro-ph/0405133.
[60] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[61] M. Briley. CN and CH band strengths of 283 47 tucanae giants. , 1997 .
[62] William E. Harris,et al. A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .
[63] William B. Hubbard,et al. Cool zero-metallicity stellar atmospheres , 1994 .
[64] Peter B. Stetson,et al. THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .
[65] Oscar Straniero,et al. The alpha -enhanced Isochrones and Their Impact on the FITS to the Galactic Globular Cluster System , 1993 .
[66] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[67] Doug Tody,et al. The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.
[68] G. Piotto,et al. Galactic Globular Cluster Relative Ages , 1999 .