Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.

[1]  M. Yoneyama,et al.  Function of RIG-I-like Receptors in Antiviral Innate Immunity* , 2007, Journal of Biological Chemistry.

[2]  S. Akira,et al.  Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 , 2007, Proceedings of the National Academy of Sciences.

[3]  A. Pichlmair,et al.  RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates , 2006, Science.

[4]  Gunther Hartmann,et al.  5'-Triphosphate RNA Is the Ligand for RIG-I , 2006, Science.

[5]  T. Fujita Sensing Viral RNA Amid Your Own , 2006, Science.

[6]  Richard A Flavell,et al.  Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Ishii,et al.  Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses , 2006, Nature.

[8]  Paul A. Serbinowski,et al.  A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells , 2006, Nature Biotechnology.

[9]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[10]  N. Tanner,et al.  The DEAD-box protein family of RNA helicases. , 2006, Gene.

[11]  Shizuo Akira,et al.  Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity1 , 2005, The Journal of Immunology.

[12]  Osamu Takeuchi,et al.  Cell type-specific involvement of RIG-I in antiviral response. , 2005, Immunity.

[13]  Shizuo Akira,et al.  The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses , 2004, Nature Immunology.

[14]  G. Sen,et al.  Crystal structure of the 2'-specific and double-stranded RNA-activated interferon-induced antiviral protein 2'-5'-oligoadenylate synthetase. , 2003, Molecular cell.

[15]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[16]  R. Flavell,et al.  Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 , 2001, Nature.

[17]  C. Samuel,et al.  Antiviral Actions of Interferons , 2001, Clinical Microbiology Reviews.

[18]  W. Merrick,et al.  Further Characterization of the Helicase Activity of eIF4A , 2001, The Journal of Biological Chemistry.

[19]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[20]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[21]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[22]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[23]  S. Schreiber,et al.  Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface , 1995, Nature.

[24]  S. Schreiber,et al.  Cloning, Zn2+ binding, and structural characterization of the guanine nucleotide exchange factor human Mss4. , 1995, Biochemistry.

[25]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[26]  N. Sonenberg,et al.  Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF‐4A. , 1992, The EMBO journal.