Dual-band shared aperture reflector/reflectarray antenna: Designs, technologies and demonstrations for nasa's ACE radar

NASA's planned Aerosol, Cloud and Ecosystems (ACE) mission will provide RF measurements for studying the role of aerosols on cloud development. The space-borne radar requires a fixed-beam at W-band and a wide-swath (>100 km) scanning beam at Ka-band. The full scale antenna is comprised of a parabolic cylinder reflector/reflectarray with a fixed W-band feed and a Ka-band Active Electronic Scanning Array (AESA) feed. Cassegrain folded optics is employed to reduce the required mass, volume, mechanical complexity and cost. An innovative reflectarray design provides a focused low-loss pencil beam at W-band, and is RF transparent at Ka-band. The AESA transmit/receive (T/R) modules provide high RF output power and low noise figure. Several planar reflector/reflectarray prototypes were designed and fabricated to validate the novel reflectarray element/surface technology and design methodology. The measured W/Ka band reflector/reflectarray gains and patterns agree very well with predictions thereby confirming the viability of the full scale design.

[1]  A. Kelkar,et al.  FLAPS: conformal phased reflecting surfaces , 1991, Proceedings of the 1991 IEEE National Radar Conference.

[2]  Kai Chang,et al.  An Offset Linear-Array-Fed Ku/Ka Dual-Band Reflectarray for Planet Cloud/Precipitation Radar , 2007, IEEE Transactions on Antennas and Propagation.

[3]  Paul Racette,et al.  The Cloud Radar System , 2003 .

[4]  John Huang Capabilities of printed reflectarray antennas , 1996, Proceedings of International Symposium on Phased Array Systems and Technology.

[5]  Wolfgang Menzel,et al.  Millimeter-wave folded reflector antennas with high gain, low loss, and low profile , 2002 .

[6]  Jose A. Encinar,et al.  A parabolic reflectarray for a bandwidth improved contoured beam coverage , 2007 .

[7]  S. Cummer,et al.  Reconfigurable Reflectarray Using Addressable Metamaterials , 2010, IEEE Antennas and Wireless Propagation Letters.

[8]  J. Encinar,et al.  Reflectarray antennas , 2007, Developments in Antenna Analysis and Design: Volume 2.

[9]  Walter D. Burnside,et al.  Expansion of existing EM workbench for multiple computational electromagnetics codes , 2003 .

[10]  E. Pelton,et al.  Scattering from periodic arrays of crossed dipoles , 1979 .

[11]  Paul Racette,et al.  A Novel Reflector/Reflectarray Antenna An Enabling Technology for NASA's Dual-Frequency ACE Radar , 2011 .

[12]  Yahya Rahmat-Samii,et al.  Reflector Antennas , 2014, Encyclopedia of Remote Sensing.

[13]  W. Menzel,et al.  Investigation of wideband millimetre-wave reflectarrays for radar applications operating in the W Band , 2009, 2009 3rd European Conference on Antennas and Propagation.

[14]  Shyh-Jong Chung,et al.  A Dual-Mode Millimeter-Wave Folded Microstrip Reflectarray Antenna , 2008, IEEE Transactions on Antennas and Propagation.

[15]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[16]  A. Ittipiboon,et al.  Reflectarray research at the communications research centre Canada , 2008, IEEE Antennas and Propagation Magazine.

[17]  J. Huang,et al.  Microstrip reflectarray , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[18]  Paul Racette,et al.  A 94-GHz Cloud Radar System on a NASA High-Altitude ER-2 Aircraft , 2004 .