POINT PROCESSES AND THE INFINITE SYMMETRIC GROUP

The central theme of noncommutative harmonic analysis is decomposition of natural unitary representations T into elementary ones (i.e., into irreducible or factor representations). When T is endowed with a distinguished cyclic vector, its decomposition is governed by a measure, called the spectral or Plancherel measure. For instance, one of the achievements of the classical representation theory is the explicit calculation by Gindikin and Karpelevich of the spectral measure for the natural representation in the L 2 space on an arbitrary Riemannian symmetric space.

[1]  A. Vershik,et al.  Limit Measures Arising in the Asympyotic Theory of Symmetric Groups. I. , 1977 .

[2]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[3]  C. Tracy,et al.  Painlevé functions of the third kind , 1977 .

[4]  J. Wimp A Class of Integral Transforms , 1964, Proceedings of the Edinburgh Mathematical Society.

[5]  Grigori Olshanski,et al.  The boundary of the Young graph with Jack edge multiplicities , 1997 .

[6]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[7]  Transitions in spectral statistics , 1993, cond-mat/9311001.

[8]  C. Tracy Asymptotics of a τ-function arising in the two-dimensional Ising model , 1991 .

[9]  Grigori Olshanski,et al.  Point processes and the infinite symmetric group. Part III: Fermion point processes , 1998 .

[10]  M. Gaudin Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .

[11]  A. Vershik,et al.  Harmonic analysis on the infinite symmetric group. A deformation of the regular representation , 1993 .

[12]  Anatoly M. Vershik,et al.  Asymptotic theory of characters of the symmetric group , 1981 .

[13]  Yang Chen,et al.  New family of unitary random matrices. , 1993, Physical review letters.

[14]  Alexei Borodin Biorthogonal ensembles , 1998 .

[15]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[16]  Pragya Shukla,et al.  Two coupled matrices: eigenvalue correlations and spacing functions , 1994 .

[17]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[18]  Grigori Olshanski Point processes and the infinite symmetric group. Part V: Analysis of the matrix Whittaker kernel , 1998 .

[19]  Alexei Borodin Point Processes and the Infinite Symmetric Group. Part II: Higher Correlation Functions , 1998 .

[20]  Point processes and the infinite symmetric group. Part VI: Summary of results , 1998, math/9810015.

[21]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[22]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[23]  G. Olshanski,et al.  Point processes and the infinite symmetric group. Part III: Fermion point processes , 1998, math/9804088.

[24]  J. Cardy,et al.  QUANTUM INVERSE SCATTERING METHOD AND CORRELATION FUNCTIONS , 1995 .