A Note on Submodular Function Minimization with Covering Type Linear Constraints

In this paper, we consider the non-negative submodular function minimization problem with covering type linear constraints. Assume that there exist m linear constraints, and we denote by $$\varDelta _i$$Δi the number of non-zero coefficients in the ith constraints. Furthermore, we assume that $$\varDelta _1 \ge \varDelta _2 \ge \cdots \ge \varDelta _m$$Δ1≥Δ2≥⋯≥Δm. For this problem, Koufogiannakis and Young proposed a polynomial-time $$\varDelta _1$$Δ1-approximation algorithm. In this paper, we propose a new polynomial-time primal-dual approximation algorithm based on the approximation algorithm of Takazawa and Mizuno for the covering integer program with $$\{0,1\}$${0,1}-variables and the approximation algorithm of Iwata and Nagano for the submodular function minimization problem with set covering constraints. The approximation ratio of our algorithm is $$\max \{\varDelta _2, \min \{\varDelta _1, 1 + \varPi \}\}$$max{Δ2,min{Δ1,1+Π}}, where $$\varPi $$Π is the maximum size of a connected component of the input submodular function.

[1]  Rishabh K. Iyer,et al.  Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization , 2014, UAI.

[2]  Jeff A. Bilmes,et al.  Graph cuts with interacting edge weights: examples, approximations, and algorithms , 2014, Mathematical Programming.

[3]  Rishabh K. Iyer,et al.  Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints , 2013, NIPS.

[4]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[5]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[6]  K. Murota Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .

[7]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[8]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[9]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[10]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, FOCS.

[11]  Yotaro Takazawa,et al.  A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH A FORCING GRAPH , 2017 .

[12]  Robert D. Carr,et al.  Strengthening integrality gaps for capacitated network design and covering problems , 2000, SODA '00.

[13]  Christos Koufogiannakis,et al.  Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost , 2013, Algorithmica.

[14]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Dorit S. Hochbaum Submodular problems - approximations and algorithms , 2010, ArXiv.

[16]  Naoyuki Kamiyama Submodular Function Minimization under a Submodular Set Covering Constraint , 2011, TAMC.

[17]  David B. Shmoys,et al.  Primal-dual schema for capacitated covering problems , 2015, Math. Program..

[18]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[20]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[22]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[23]  Rishabh K. Iyer,et al.  Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions , 2013, NIPS.

[24]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..