Computer Vision and Image Understanding 114 (2010) 135–145 Contents lists available at ScienceDirect Computer Vision and Image Understanding

Face recognition under changing lighting conditions is a challenging problem in computer vision. In this paper, we analyze the relative strengths of different lighting insensitive representations, and propose efficient classifier combination schemes that result in better recognition rates. We consider two experimental settings, wherein we study the performance of different algorithms with (and without) prior information on the different illumination conditions present in the scene. In both settings, we focus on the problem of having just one exemplar per person in the gallery. Based on these observations, we design algorithms for integrating the individual classifiers to capture the significant aspects of each representation. We then illustrate the performance improvement obtained through our classifier combination algorithms on the illumination subset of the PIE dataset, and on the extended Yale-B dataset. Throughout, we consider galleries with both homogenous and heterogeneous lighting conditions.

[1]  Loris Nanni,et al.  Weighted Sub-Gabor for face recognition , 2007, Pattern Recognit. Lett..

[2]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[3]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[4]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[5]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[6]  David W. Jacobs,et al.  In search of illumination invariants , 2001, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[9]  Javier Ruiz-del-Solar,et al.  Illumination compensation and normalization in eigenspace-based face recognition: A comparative study of different pre-processing approaches , 2008, Pattern Recognit. Lett..

[10]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[12]  Marios Savvides,et al.  Eigenphases vs eigenfaces , 2004, ICPR 2004.

[13]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Marios Savvides,et al.  Correlation Pattern Recognition for Face Recognition , 2006, Proceedings of the IEEE.

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[18]  Haitao Wang,et al.  Face recognition under varying lighting conditions using self quotient image , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[19]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[20]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  D. Jacobs,et al.  Surface Dependent Representations for Illumination Insensitive Image Comparison , 2007 .

[22]  Loris Nanni,et al.  Wavelet decomposition tree selection for palm and face authentication , 2008, Pattern Recognit. Lett..

[23]  B. V. K. Vijaya Kumar,et al.  Eigenphases vs eigenfaces , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[24]  Ralph Gross,et al.  An Image Preprocessing Algorithm for Illumination Invariant Face Recognition , 2003, AVBPA.

[25]  Bernd Jähne,et al.  Digital image processing (3rd ed.): concepts, algorithms, and scientific applications , 1995 .

[26]  Loris Nanni,et al.  Fusion of classifiers for illumination robust face recognition , 2009, Expert Syst. Appl..

[27]  Stefano Soatto,et al.  A Study of Face Recognition as People Age , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[28]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[29]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[30]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.