Modélisation cellulaire pour l'émergence de structures multiprotéiques auto-organisées

La biologie des systemes et la simulation cellulaire sont nees conjointement et entretiennent des relations ambigues entre approches globalisantes et approches emergentistes. Nous presentons ici une demarche emergentiste de la modelisation cellulaire, basee sur une simulation multiagent. Nous decrivons l'ensemble du processus de creation du modele, depuis le projet scientifique jusqu'aux methodes d'implementation, en insistant particulierement sur le modele d'interactions entre agents qui est la base de notre simulation. Enfin, des resultats preliminaires montrant l'emergence de structures organisees sont presentes pour illustrer l'interet de l'approche proposee.

[1]  P. Ballet,et al.  The BioDyn language and simulator. Application to an immune response and E. coli and phage interaction p , 2002 .

[2]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[3]  Tom Misteli,et al.  Global Nature of Dynamic Protein-Chromatin Interactions In Vivo: Three-Dimensional Genome Scanning and Dynamic Interaction Networks of Chromatin Proteins , 2004, Molecular and Cellular Biology.

[4]  Masaru Tomita,et al.  A multi-algorithm, multi-timescale method for cell simulation , 2004, Bioinform..

[5]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[6]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[7]  Luis Serrano,et al.  Space as the final frontier in stochastic simulations of biological systems , 2005, FEBS letters.

[8]  G Tononi,et al.  Measures of degeneracy and redundancy in biological networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Alessandro Vespignani,et al.  Evolution thinks modular , 2003, Nature Genetics.

[10]  L. Loew,et al.  The Virtual Cell: a software environment for computational cell biology. , 2001, Trends in biotechnology.

[11]  Jacques Ferber,et al.  A meta-model for the analysis and design of organizations in multi-agent systems , 1998, Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160).

[12]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[13]  Alan J. McKane Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[14]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[15]  Peter Tang,et al.  Dynamic cellular automata : an alternative approach to cellular simulation , 2007 .

[16]  T Misteli,et al.  Protein dynamics: implications for nuclear architecture and gene expression. , 2001, Science.

[17]  Leonid Sheremetov,et al.  Weiss, Gerhard. Multiagent Systems a Modern Approach to Distributed Artificial Intelligence , 2009 .

[18]  Peer Bork,et al.  Towards Cellular Systems in 4D , 2005, Cell.

[19]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[20]  J. McNally,et al.  The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. , 2000, Science.

[21]  Moshe Sipper,et al.  Surprise versus unsurprise: Implications of emergence in robotics , 2001, Robotics Auton. Syst..

[22]  Frank Schweitzer,et al.  Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[23]  Céline Robardet,et al.  Modeling the emergence of multi-protein dynamic structures by principles of self-organization through the use of 3DSpi, a multi-agent-based software , 2005, BMC Bioinformatics.

[24]  Guillermo Ricardo Simari,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 2000 .

[25]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[26]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[27]  Yves Demazeau,et al.  FROM INTERACTIONS TO COLLECTIVE BEHAVIOUR IN AGENT-BASED SYSTEMS , 1995 .

[28]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[29]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[30]  Franck Molina,et al.  Hyperstructures , genome analysis and I-cell , 2008 .

[31]  Robert H Singer,et al.  Gene expression and the myth of the average cell. , 2003, Trends in cell biology.

[32]  H. Berg Random Walks in Biology , 2018 .

[33]  J. Kupiec A Darwinian theory for the origin of cellular differentiation , 1997, Molecular and General Genetics MGG.

[34]  Maurice Demarty,et al.  Modelling Bacterial Hyperstructures with Cellular Automata , 2006 .

[35]  Tom Misteli,et al.  Concepts in nuclear architecture , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  S. Atamas Self-organization in computer simulated selective systems. , 1996, Bio Systems.

[37]  Gordon Broderick,et al.  A life-like virtual cell membrane using discrete automata , 2004, Silico Biol..