Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes.

Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.

[1]  L. Lindahl,et al.  RNase MRP and rRNA processing , 2004, Molecular Biology Reports.

[2]  P. Gegenheimer Structure, mechanism and evolution of chloroplast transfer RNA processing systems , 2004, Molecular Biology Reports.

[3]  Ram Reddy,et al.  Structural and functional similarities between MRP and RNase P , 2004, Molecular Biology Reports.

[4]  M. Schmitt,et al.  The yeast,Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family , 2004, Molecular Biology Reports.

[5]  D. Tollervey Genetic and biochemical analyses of yeast RNase MRP , 2004, Molecular Biology Reports.

[6]  H. Fukuhara,et al.  Characterization of a yeast mitochondrial locus necessary for tRNA biosynthesis , 2004, Molecular and General Genetics MGG.

[7]  D. Engelke,et al.  Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. Rossmanith,et al.  Difference between Mitochondrial RNase P and Nuclear RNase P , 2001, Molecular and Cellular Biology.

[9]  H. True,et al.  Novel RNA-binding Properties of Pop3p Support a Role for Eukaryotic RNase P Protein Subunits in Substrate Recognition* , 2001, The Journal of Biological Chemistry.

[10]  N. Martin,et al.  Rpm2p: separate domains promote tRNA and Rpm1r maturation in Saccharomyces cerevisiae mitochondria. , 2001, Nucleic acids research.

[11]  G. Pruijn,et al.  hPop5, a Protein Subunit of the Human RNase MRP and RNase P Endoribonucleases* , 2001, The Journal of Biological Chemistry.

[12]  S. Altman,et al.  Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. , 2001, RNA.

[13]  S. Altman,et al.  Protein-RNA interactions in the subunits of human nuclear RNase P. , 2001, RNA.

[14]  K. Stuart,et al.  Mitochondrial ribonuclease P activity of Trypanosoma brucei. , 2001, Molecular and biochemical parasitology.

[15]  T. Pan,et al.  Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. , 2001, Nucleic acids research.

[16]  Sui Huang,et al.  Nucleolar Components Involved in Ribosome Biogenesis Cycle between the Nucleolus and Nucleoplasm in Interphase Cells , 2001, The Journal of cell biology.

[17]  D. Engelke,et al.  An essential protein-binding domain of nuclear RNase P RNA. , 2001, RNA.

[18]  D. Engelke,et al.  Eukaryotic ribonuclease P: Increased complexity to cope with the nuclear pre‐tRNA pathway , 2001, Journal of cellular physiology.

[19]  S. Altman,et al.  Protein-protein interactions with subunits of human nuclear RNase P. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Altman,et al.  A subunit of human nuclear RNase P has ATPase activity. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Maraia,et al.  Recognition of Nascent RNA by the Human La Antigen: Conserved and Divergent Features of Structure and Function , 2001, Molecular and Cellular Biology.

[22]  G. Attardi,et al.  The RNase P Associated with HeLa Cell Mitochondria Contains an Essential RNA Component Identical in Sequence to That of the Nuclear RNase P , 2001, Molecular and Cellular Biology.

[23]  S. Altman,et al.  Varieties of RNase P: a nomenclature problem? , 2000, RNA.

[24]  N. Pace,et al.  Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. , 2000, RNA.

[25]  P Gegenheimer,et al.  Enzyme nomenclature: functional or structural? , 2000, RNA.

[26]  D. Engelke,et al.  A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Stathopoulos,et al.  Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies , 2000, FEBS letters.

[28]  C. Fierke,et al.  Ribonuclease P: a ribonucleoprotein enzyme. , 2000, Current opinion in chemical biology.

[29]  Vincent Moulton,et al.  Use of RNA Secondary Structure for Studying the Evolution of RNase P and RNase MRP , 2000, Journal of Molecular Evolution.

[30]  J. J. Day,et al.  Effects of 5' leader and 3' trailer structures on pre-tRNA processing by nuclear RNase P. , 2000, Biochemistry.

[31]  B. Séraphin,et al.  Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes. , 2000, Journal of molecular biology.

[32]  L. Lindahl,et al.  Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. , 2000, RNA.

[33]  G. Pruijn,et al.  Architecture and Function of the Human Endonucleases RNase P and RNase MRP , 2000, IUBMB life.

[34]  D. Engelke,et al.  Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. , 2000, RNA.

[35]  X. Li,et al.  Chloroplast ribonuclease P does not utilize the ribozyme-type pre-tRNA cleavage mechanism. , 2000, RNA.

[36]  S. Altman,et al.  Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. , 2000, Journal of molecular biology.

[37]  C. Prescott,et al.  The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. , 2000, Journal of molecular biology.

[38]  M. Saraste,et al.  FEBS Lett , 2000 .

[39]  T. Pan,et al.  A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. , 1999, Biochemistry.

[40]  M. Schmitt,et al.  Mutagenesis of SNM1, Which Encodes a Protein Component of the Yeast RNase MRP, Reveals a Role for This Ribonucleoprotein Endoribonuclease in Plasmid Segregation , 1999, Molecular and Cellular Biology.

[41]  T. Pan,et al.  Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. , 1999, Nucleic acids research.

[42]  M. Schmitt Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. , 1999, Journal of molecular biology.

[43]  D. P. Pomeranz Krummel,et al.  Verification of phylogenetic predictions in vivo and the importance of the tetraloop motif in a catalytic RNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Altman,et al.  Localization in the Nucleolus and Coiled Bodies of Protein Subunits of the Ribonucleoprotein Ribonuclease P , 1999, The Journal of cell biology.

[45]  James W. Brown,et al.  RNase P RNAs from some Archaea are catalytically active. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Bertrand Séraphin,et al.  Sm and Sm‐like proteins assemble in two related complexes of deep evolutionary origin , 1999, The EMBO journal.

[47]  A. Hinnebusch,et al.  GCD14p, a Repressor of GCN4 Translation, Cooperates with Gcd10p and Lhp1p in the Maturation of Initiator Methionyl-tRNA in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[48]  A. Schön,et al.  Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme. , 1999, FEMS microbiology reviews.

[49]  A. Schön,et al.  Cyanelle RNase P: RNA structure analysis and holoenzyme properties of an organellar ribonucleoprotein enzyme. , 1999, Journal of molecular biology.

[50]  G. Pruijn,et al.  RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. , 1999, RNA.

[51]  S. Altman,et al.  Rpp14 and Rpp29, two protein subunits of human ribonuclease P. , 1999, RNA.

[52]  A. Vioque,et al.  Functional reconstitution of RNase P activity from a plastid RNA subunit and a cyanobacterial protein subunit , 1999, FEBS letters.

[53]  James W. Brown,et al.  The Ribonuclease P Database , 1994, Nucleic Acids Res..

[54]  S. Wolin,et al.  The trials and travels of tRNA. , 1999, Genes & development.

[55]  G. Pruijn,et al.  hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes. , 1999, Nucleic acids research.

[56]  S. Niranjanakumari,et al.  Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Wolin,et al.  A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts , 1998, The EMBO journal.

[58]  S. Niranjanakumari,et al.  Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. , 1998, Biochemistry.

[59]  R. Quatrano Genomics , 1998, Plant Cell.

[60]  A. Hopper,et al.  tRNA nuclear export in saccharomyces cerevisiae: in situ hybridization analysis. , 1998, Molecular biology of the cell.

[61]  W. Rossmanith,et al.  Impairment of tRNA processing by point mutations in mitochondrial tRNALeu(UUR) associated with mitochondrial diseases , 1998, FEBS letters.

[62]  D. Engelke,et al.  Nucleolar localization of early tRNA processing. , 1998, Genes & development.

[63]  J. Kufel,et al.  The P15-loop of Escherichia coli RNase P RNA is an autonomous divalent metal ion binding domain. , 1998, RNA.

[64]  N. Pace,et al.  Comparative structure analysis of vertebrate ribonuclease P RNA. , 1998, Nucleic acids research.

[65]  Carol A. Fierke,et al.  Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis , 1998, Nucleic Acids Res..

[66]  S. Niranjanakumari,et al.  The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5' leader sequence of pre-tRNAAsp. , 1998, Biochemistry.

[67]  E Westhof,et al.  Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. , 1998, Journal of molecular biology.

[68]  W. Rossmanith,et al.  Characterization of human mitochondrial RNase P: novel aspects in tRNA processing. , 1998, Biochemical and biophysical research communications.

[69]  V. Štolc,et al.  Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  William Arbuthnot Sir Lane,et al.  Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. , 1998, Genes & development.

[71]  N. Pace,et al.  Participation of the 3'-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P. , 1998, Biochemistry.

[72]  S. Niranjanakumari,et al.  Ribonuclease P protein structure: evolutionary origins in the translational apparatus. , 1998, Science.

[73]  H. True,et al.  Protein Components Contribute to Active Site Architecture for Eukaryotic Ribonuclease P* , 1998, The Journal of Biological Chemistry.

[74]  D. Engelke,et al.  Structural analysis of the P10/11-P12 RNA domain of yeast RNase P RNA and its interaction with magnesium. , 1998, Biochemistry.

[75]  S. Niranjanakumari,et al.  Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. , 1998, Biochemistry.

[76]  N. Pace,et al.  Ribonuclease P: unity and diversity in a tRNA processing ribozyme. , 1998, Annual review of biochemistry.

[77]  A. Mildvan Mechanisms of signaling and related enzymes , 1997, Proteins.

[78]  V. Štolc,et al.  Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. , 1997, Genes & development.

[79]  N. Pace,et al.  Identification of the universally conserved core of ribonuclease P RNA. , 1997, RNA.

[80]  S. Wolin,et al.  The Yeast La Protein Is Required for the 3′ Endonucleolytic Cleavage That Matures tRNA Precursors , 1997, Cell.

[81]  D. Landsman,et al.  Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. , 1997, Journal of molecular biology.

[82]  L. Lindahl,et al.  A novel protein shared by RNase MRP and RNase P. , 1997, RNA.

[83]  R. Singer,et al.  Nuclear domains of the RNA subunit of RNase P. , 1997, Journal of cell science.

[84]  Y. Chen,et al.  Ribonuclease P catalysis requires Mg2+ coordinated to the pro-RP oxygen of the scissile bond. , 1997, Biochemistry.

[85]  V. Štolc,et al.  Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. Engelke,et al.  Nuclear pre-tRNA terminal structure and RNase P recognition. , 1997, RNA.

[87]  D. Tollervey,et al.  Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins in vivo , 1997, The EMBO journal.

[88]  B. Séraphin,et al.  hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. , 1996, EMBO Journal.

[89]  D. Engelke,et al.  A conserved RNA motif involved in divalent cation utilization by nuclear RNase P. , 1996, RNA.

[90]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[91]  C. Fierke,et al.  Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. , 1996, Biochemistry.

[92]  M. Wickens,et al.  A three-hybrid system to detect RNA-protein interactions in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Engelke,et al.  An RNase P RNA subunit mutation affects ribosomal RNA processing. , 1996, Nucleic acids research.

[94]  H. True,et al.  Ribonuclease P of Tetrahymena thermophila* , 1996, The Journal of Biological Chemistry.

[95]  N. Martin,et al.  Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: insights into the biogenesis of a mitochondrial RNA-processing enzyme , 1996, Molecular and cellular biology.

[96]  J. Kufel,et al.  The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept]. , 1996, Nucleic acids research.

[97]  T. Pan,et al.  Domain structure of the ribozyme from eubacterial ribonuclease P. , 1996, RNA.

[98]  D. Engelke,et al.  Mutational analysis of Saccharomyces cerevisiae nuclear RNase P: randomization of universally conserved positions in the RNA subunit. , 1996, RNA.

[99]  B. Séraphin,et al.  Accurate Processing of a Eukaryotic Precursor Ribosomal RNA by Ribonuclease MRP in Vitro , 1996, Science.

[100]  M. Baum,et al.  RNase P from a photosynthetic organelle contains an RNA homologous to the cyanobacterial counterpart. , 1996, Journal of molecular biology.

[101]  Y. Wang,et al.  Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells , 1995, The Journal of cell biology.

[102]  N. Martin,et al.  RPM2, independently of its mitochondrial RNase P function, suppresses an ISP42 mutant defective in mitochondrial import and is essential for normal growth , 1995, Molecular and cellular biology.

[103]  J. Schlegl,et al.  Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[104]  S. Wolin,et al.  A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I [published erratum appears in J Cell Biol 1995 Jul;130(2):497-500] , 1995, The Journal of cell biology.

[105]  Apollonia Tullo,et al.  Human Mitochondrial tRNA Processing (*) , 1995, The Journal of Biological Chemistry.

[106]  N. Pace,et al.  Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. , 1995, RNA.

[107]  N. Pace,et al.  Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme , 1995, Journal of bacteriology.

[108]  C. Stathopoulos,et al.  Partial purification and characterization of RNase P from Dictyostelium discoideum. , 1995, European journal of biochemistry.

[109]  M. Stella,et al.  Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. , 1994, Genes & development.

[110]  D. A. Clayton,et al.  Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. , 1994, Genes & development.

[111]  N. Pace,et al.  Interaction of the 3'-end of tRNA with ribonuclease P RNA. , 1994, Nucleic acids research.

[112]  S. Svärd,et al.  Base pairing between Escherichia coli RNase P RNA and its substrate. , 1994, The EMBO journal.

[113]  H. Inokuchi,et al.  A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[114]  N. Pace,et al.  Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. , 1994, The EMBO journal.

[115]  C. Fierke,et al.  A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. , 1994, Biochemistry.

[116]  B. Séraphin,et al.  The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. , 1994, Genes & development.

[117]  James W. Brown,et al.  Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[118]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[119]  J. Richardson,et al.  Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis , 1994, The Journal of cell biology.

[120]  A. Tranguch,et al.  Structure-sensitive RNA footprinting of yeast nuclear ribonuclease P. , 1994, Biochemistry.

[121]  S. Altman,et al.  Gel retardation analysis of the interaction between C5 protein and M1 RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. , 1994, Biochemistry.

[122]  T. Cech,et al.  GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. , 1994, Journal of molecular biology.

[123]  A. Tranguch,et al.  Replacement of the Saccharomyces cerevisiae RPR1 gene with heterologous RNase P RNA genes. , 1994, Nucleic acids research.

[124]  L. Lindahl,et al.  The RNA of RNase MRP is required for normal processing of ribosomal RNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[125]  V. Erdmann,et al.  Lead-ion-induced cleavage of RNase P RNA. , 1994, European journal of biochemistry.

[126]  D A Clayton,et al.  Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[127]  S. Altman,et al.  Nucleotide sequences of the RNA subunit of RNase P from several mammals. , 1993, Genomics.

[128]  N. Martin,et al.  Yeast mitochondrial RNase P. Sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme. , 1993, The Journal of biological chemistry.

[129]  S. Altman,et al.  A physical assay for and kinetic analysis of the interactions between M1 RNA and tRNA precursor substrates. , 1993, Biochemistry.

[130]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[131]  A. Tranguch,et al.  Comparative structural analysis of nuclear RNase P RNAs from yeast. , 1993, The Journal of biological chemistry.

[132]  R. Karwan RNase MRP/RNase P: a structure‐function relation conserved in evolution? , 1993, FEBS letters.

[133]  F. Schmidt,et al.  Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption. , 1993, Journal of molecular biology.

[134]  D. Dairaghi,et al.  Secondary structure of RNase MRP RNA as predicted by phylogenetic comparison , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[135]  N. Martin,et al.  A 105-kDa protein is required for yeast mitochondrial RNase P activity. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[136]  W. Filipowicz,et al.  7‐2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. , 1992, The EMBO journal.

[137]  M. Schmitt,et al.  Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability. , 1992, Genes & development.

[138]  I. Wool,et al.  Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. , 1992, Journal of molecular biology.

[139]  G. Jayanthi,et al.  Characterization of ribonuclease P isolated from rat liver cytosol. , 1992, Archives of biochemistry and biophysics.

[140]  N. Pace,et al.  Contributions of phylogenetically variable structural elements to the function of the ribozyme ribonuclease P. , 1992, Biochemistry.

[141]  N. Martin,et al.  Dramatic size variation of yeast mitochondrial RNAs suggests that RNase P RNAs can be quite small. , 1991, The Journal of biological chemistry.

[142]  S. Altman,et al.  Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[143]  E. Tan,et al.  The 40-kilodalton to autoantigen associates with nucleotides 21 to 64 of human mitochondrial RNA processing/7-2 RNA in vitro , 1991, Molecular and cellular biology.

[144]  D. Engelke,et al.  Expression of RNase P RNA in Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[145]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[146]  G. Tocchini-Valentini,et al.  An RNA molecule copurifies with RNase P activity from Xenopus laevis oocytes. , 1991, Nucleic acids research.

[147]  N. Martin,et al.  A gene required for RNase P activity in Candida (Torulopsis) glabrata mitochondria codes for a 227-nucleotide RNA with homology to bacterial RNase P RNA , 1991, Molecular and cellular biology.

[148]  D. Engelke,et al.  Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P , 1991, Molecular and cellular biology.

[149]  C. Peebles,et al.  In vivo pre-tRNA processing in Saccharomyces cerevisiae , 1991, Molecular and cellular biology.

[150]  Jae-Yong Lee Characterization of Saccharomyces cerevisiae nuclear RNase P and its RNA subunit. , 1991 .

[151]  N. Pace,et al.  Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. , 1990, The EMBO journal.

[152]  D. Söll,et al.  The RNA component of RNase P in Schizosaccharomyces species , 1990, FEBS letters.

[153]  G. Varani,et al.  Solution structure of an unusually stable RNA hairpin, 5GGAC(UUCG)GUCC , 1990, Nature.

[154]  S. Altman,et al.  Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes , 1990, Cell.

[155]  J. N. Topper,et al.  The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. , 1989, Science.

[156]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[157]  D. Engelke,et al.  Partial characterization of an RNA component that copurifies with Saccharomyces cerevisiae RNase P , 1989, Molecular and cellular biology.

[158]  S. Altman,et al.  Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. , 1989, Genes & development.

[159]  S. Altman,et al.  Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli. , 1988, Journal of molecular biology.

[160]  G. Reimer,et al.  Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus. , 1988, Experimental cell research.

[161]  G. Stormo,et al.  CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[162]  M. W. Clark,et al.  The subnuclear localization of tRNA ligase in yeast , 1987, The Journal of cell biology.

[163]  D. Chang,et al.  A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. , 1987, Science.

[164]  D. Chang,et al.  A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. , 1987, The EMBO journal.

[165]  N. Martin,et al.  Characterization of the yeast mitochondrial locus necessary for tRNA biosynthesis: DNA sequence analysis and identification of a new transcript , 1983, Cell.

[166]  D. Söll,et al.  Partial purification of RNase P from Schizosaccharomyces pombe. , 1981, The Journal of biological chemistry.

[167]  S. Altman,et al.  Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA. , 1976, The Journal of biological chemistry.