Model Counting for CNF Formulas of Bounded Modular Treewidth

We define the modular treewidth of a graph as its treewidth after contraction of modules. This parameter properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments can be computed in polynomial time for CNF formulas whose incidence graphs have bounded modular treewidth. Our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial bounding the runtime of our algorithm depends on the modular treewidth of the input formula. We show that it is unlikely that this dependency can be avoided by proving that SAT is W[1]-hard when parameterized by the modular incidence treewidth of the given CNF formula.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Daniël Paulusma,et al.  Satisfiability of Acyclic and Almost Acyclic CNF Formulas , 2010, FSTTCS.

[3]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[4]  Mikko Koivisto,et al.  Homomorphic Hashing for Sparse Coefficient Extraction , 2012, IPEC.

[5]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[6]  Georg Gottlob,et al.  Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width , 2004, SIAM J. Comput..

[7]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[8]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[9]  Krzysztof Pietrzak,et al.  On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems , 2003, J. Comput. Syst. Sci..

[10]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[11]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[12]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[13]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[14]  Toniann Pitassi,et al.  Solving #SAT and Bayesian Inference with Backtracking Search , 2014, J. Artif. Intell. Res..

[15]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[16]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[17]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[18]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..

[19]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[20]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[21]  Petr Hlinený,et al.  Finding Branch-Decompositions and Rank-Decompositions , 2007, ESA.

[22]  Robert Ganian,et al.  Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width , 2010, Fundam. Informaticae.

[23]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[24]  Daniël Paulusma,et al.  Satisfiability of acyclic and almost acyclic CNF formulas , 2011, Theor. Comput. Sci..

[25]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[26]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[27]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[28]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[29]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[30]  Michel Habib,et al.  A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..

[31]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[32]  Georg Gottlob,et al.  Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width , 2001, SIAM J. Comput..

[33]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[34]  Marko Samer,et al.  Algorithms for propositional model counting , 2007, J. Discrete Algorithms.

[35]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[36]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..