Model Counting for CNF Formulas of Bounded Modular Treewidth
暂无分享,去创建一个
[1] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[2] Daniël Paulusma,et al. Satisfiability of Acyclic and Almost Acyclic CNF Formulas , 2010, FSTTCS.
[3] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[4] Mikko Koivisto,et al. Homomorphic Hashing for Sparse Coefficient Extraction , 2012, IPEC.
[5] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[6] Georg Gottlob,et al. Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width , 2004, SIAM J. Comput..
[7] Bruno Courcelle,et al. On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..
[8] Johann A. Makowsky,et al. Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..
[9] Krzysztof Pietrzak,et al. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems , 2003, J. Comput. Syst. Sci..
[10] Stefan Szeider,et al. On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.
[11] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[12] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.
[13] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[14] Toniann Pitassi,et al. Solving #SAT and Bayesian Inference with Backtracking Search , 2014, J. Artif. Intell. Res..
[15] Toniann Pitassi,et al. Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[16] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.
[17] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[18] Bruno Courcelle,et al. The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..
[19] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[20] Dan Roth,et al. On the Hardness of Approximate Reasoning , 1993, IJCAI.
[21] Petr Hlinený,et al. Finding Branch-Decompositions and Rank-Decompositions , 2007, ESA.
[22] Robert Ganian,et al. Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width , 2010, Fundam. Informaticae.
[23] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[24] Daniël Paulusma,et al. Satisfiability of acyclic and almost acyclic CNF formulas , 2011, Theor. Comput. Sci..
[25] Arnold Schönhage,et al. Schnelle Multiplikation großer Zahlen , 1971, Computing.
[26] Paul D. Seymour,et al. Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.
[27] Toby Walsh,et al. Handbook of satisfiability , 2009 .
[28] Henry A. Kautz,et al. Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.
[29] Cesare Tinelli,et al. Handbook of Satisfiability , 2021, Handbook of Satisfiability.
[30] Michel Habib,et al. A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..
[31] Udi Rotics,et al. Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..
[32] Georg Gottlob,et al. Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width , 2001, SIAM J. Comput..
[33] Bart Selman,et al. Model Counting , 2021, Handbook of Satisfiability.
[34] Marko Samer,et al. Algorithms for propositional model counting , 2007, J. Discrete Algorithms.
[35] Bruno Courcelle,et al. Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..
[36] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..