Dagwood: a system for manipulating polynomials given by straight-line programs

We discuss the design, implementation, and benchmarking of a system that can manipulate symbolic expressions represented by their straight-line computations. Our system is capable of performing rational arithmetic on, evaluating, differentiating, taking greatest common divisors of, and factoring polynomials in straight-line format. The straight-line results can also be converted to standard, sparse format. We show by example that our system can handle problems for which conventional methods lead to excessive intermediate expression swell.

[1]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[2]  David A. Plaisted Sparse Complex Polynomials and Polynomial Reducibility , 1977, J. Comput. Syst. Sci..

[3]  Paul S. Wang,et al.  Early detection of true factors in univariate polynominal factorization , 1983, EUROCAL.

[4]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[5]  Billy G. Claybrook A New Approach to the Symbolic Factorization of Multivariate Polynomials , 1976, Artif. Intell..

[6]  Erich Kaltofen,et al.  Uniform closure properties of P-computable functions , 1986, STOC '86.

[7]  Bruce W. Char,et al.  The design of maple: A compact, portable and powerful computer algebra system , 1983, EUROCAL.

[8]  Joel Moses,et al.  Algebraic simplification: a guide for the perplexed , 1971, CACM.

[9]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[10]  Gaston H. Gonnet,et al.  Determining equivalence of expressions in random polynomial time , 1984, STOC '84.

[11]  B. F. Caviness,et al.  A note on the complexity of algebraic differentiation , 1977, SIGS.

[12]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.

[13]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[14]  Erich Kaltofen,et al.  Computing with polynomials given by straight-line programs II sparse factorization , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[15]  Oscar H. Ibarra,et al.  Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs , 1983, JACM.

[16]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[17]  Joel Moses,et al.  Symbolic integration: the stormy decade , 1966, CACM.

[18]  Erich Kaltofen Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.

[19]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[20]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[21]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[22]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[24]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[25]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[26]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[27]  B. F. Caviness,et al.  A note on the complexity of algebraic differentiation , 1977, SIGS.

[28]  Paul S. Wang An improved multivariate polynomial factoring algorithm , 1978 .