Optimum synthesis of fuzzy logic controller for trajectory tracking by differential evolution

Abstract Differential Evolution (DE) and Genetic Algorithms (GA) are population based search algorithms that come under the category of evolutionary optimization techniques. In the present study, these evolutionary methods have been utilized to conduct the optimum design of a fuzzy controller for mobile robot trajectory tracking. Comparison between their performances has also been conducted. In this paper, we will present a fuzzy controller to the problem of mobile robot path tracking for a CEDRA rescue robot. After designing the fuzzy tracking controller, the membership functions will be optimized by evolutionary algorithms in order to obtain more acceptable results.

[1]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[2]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[3]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[4]  K. C. Ng,et al.  Design of sophisticated fuzzy logic controllers using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[5]  Chin-Wang Tao,et al.  Design of fuzzy controllers with adaptive rule insertion , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Lawrence Larkin,et al.  A fuzzy logic controller for aircraft flight control , 1984, The 23rd IEEE Conference on Decision and Control.

[7]  Dilip Kumar Pratihar,et al.  Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches , 2006, Fuzzy Sets Syst..

[8]  Gianluca Antonelli,et al.  A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking , 2007, IEEE Transactions on Fuzzy Systems.

[9]  Ching-Chang Wong,et al.  GA-based Fuzzy System Design in FPGA for an Omni-directional Mobile Robot , 2005, J. Intell. Robotic Syst..

[10]  T. W. Vaneck Fuzzy guidance controller for an autonomous boat , 1997 .

[11]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[12]  John Yen,et al.  Performance evaluation of a self-tuning fuzzy controller , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[13]  Ali Meghdari,et al.  A Novel Approach for Optimal Design of a Rover Mechanism , 2005, J. Intell. Robotic Syst..

[14]  Chih-Lyang Hwang,et al.  Trajectory tracking of robot using a fuzzy decentralized sliding-mode tracking control , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[15]  S.M. Smith,et al.  Automated calibration of a fuzzy logic controller using a cell state space algorithm , 1991, IEEE Control Systems.

[16]  Won-Ho Kim,et al.  Adaptive robust fuzzy control for path tracking of a wheeled mobile robot , 2008, Artificial Life and Robotics.

[17]  B. V. Babu,et al.  Differential evolution strategies for optimal design of shell-and-tube heat exchangers , 2007 .

[18]  F.H.F. Leung,et al.  A practical fuzzy logic controller for the path tracking of wheeled mobile robots , 2003 .

[19]  Lefteris Doitsidis,et al.  Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection , 2009, J. Intell. Robotic Syst..

[20]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[21]  Plamen P. Angelov,et al.  Automatic generation of fuzzy rule-based models from data by genetic algorithms , 2003, Inf. Sci..

[22]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[23]  S. H. Mahboobi,et al.  TECHNICAL NOTE TRAJECTORY TRACKING OF A MOBILE ROBOT USING FUZZY LOGIC TUNED BY GENETIC ALGORITHM , 2006 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  R.U. Parrazales,et al.  Rule learning in fuzzy systems using evolutionary programs , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[26]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[27]  Dan Simon,et al.  Fuzzy logic for digital phase-locked loop filter design , 1995, IEEE Trans. Fuzzy Syst..

[28]  Serge Boverie,et al.  Multilevel qualitative and numerical optimization of fuzzy controller , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[29]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[30]  Shyi-Ming Chen,et al.  A new method for constructing membership functions and fuzzy rules from training examples , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Ali Meghdari,et al.  Dynamics Modeling of “CEDRA” Rescue Robot on Uneven Terrains , 2004 .

[32]  Senén Barro,et al.  Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics , 2006, Soft Comput..

[33]  Francisco Herrera,et al.  A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base , 2001, Inf. Sci..

[34]  Ali Meghdari,et al.  An effective approach for dynamic analysis of rovers , 2005, Robotica.

[35]  Zafer Bingul,et al.  A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control , 2011, Expert Syst. Appl..

[36]  Okyay Kaynak,et al.  Fuzzy Logic Based Approach to Design of Flight Control and Navigation Tasks for Autonomous Unmanned Aerial Vehicles , 2009, J. Intell. Robotic Syst..

[37]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[38]  Richard Lai,et al.  Designing a hierarchical fuzzy logic controller using the differential evolution approach , 2007, Appl. Soft Comput..

[39]  Harpreet Singh,et al.  Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[40]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .