Minimal logarithmic signatures for one type of classical groups

As a special type of factorization of finite groups, logarithmic signature (LS) is used as the main component of cryptographic keys for secret key cryptosystems such as PGM and public key cryptosystems like $$MST_1$$MST1, $$MST_2$$MST2 and $$MST_3$$MST3. An LS with the shortest length, called a minimal logarithmic signature (MLS), is even desirable for cryptographic applications. The MLS conjecture states that every finite simple group has an MLS. Recently, the conjecture has been shown to be true for general linear groups $$GL_n(q)$$GLn(q), special linear groups $$SL_n(q)$$SLn(q), and symplectic groups $$Sp_n(q)$$Spn(q) with q a power of primes and for orthogonal groups $$O_n(q)$$On(q) with q a power of 2. In this paper, we present new constructions of minimal logarithmic signatures for the orthogonal group $$O_n(q)$$On(q) and $$SO_n(q)$$SOn(q) with q a power of an odd prime. Furthermore, we give constructions of MLSs for a type of classical groups—the projective commutator subgroup $$P{\varOmega }_n(q)$$PΩn(q).

[1]  Spyros S. Magliveras,et al.  A Public Key Cryptosystem Based on Non-abelian Finite Groups , 2008, Journal of Cryptology.

[2]  Antonio Cossidente,et al.  Remarks on Singer Cyclic Groups and Their Normalizers , 2004, Des. Codes Cryptogr..

[3]  Yixian Yang,et al.  Minimal logarithmic signatures for the unitary group $$U_n(q)$$Un(q) , 2015, Des. Codes Cryptogr..

[4]  R. H. DYE MAXIMAL SUBGROUPS OF FINITE ORTHOGONAL GROUPS STABILIZING SPREADS OF LINES , 1986 .

[5]  Nidhi Singhi,et al.  Minimal logarithmic signatures for classical groups , 2011, Des. Codes Cryptogr..

[6]  Spyros S. Magliveras,et al.  Minimal logarithmic signatures for finite groups of Lie type , 2010, Des. Codes Cryptogr..

[7]  J. Thas Ovoids and spreads of finite classical polar spaces , 1981 .

[8]  William M. Kantor,et al.  Spreads, Translation Planes and Kerdock Sets. I , 1982 .

[9]  Walter Feit,et al.  Finite Simple Groups , 1983 .

[10]  László Babai,et al.  On the Number of p -Regular Elements in Finite Simple Groups , 2009 .

[11]  L. Storme,et al.  Partial Ovoids and Partial Spreads of Classical Finite Polar Spaces , 2008 .

[12]  María Isabel González Vasco,et al.  Weak Keys in MST1 , 2005, Des. Codes Cryptogr..

[13]  Rainer Steinwandt,et al.  Weak Keys in MST 1 , 2002 .

[14]  Scott A. Vanstone,et al.  Factorizations in the elementary Abelian p-group and their cryptographic significance , 1994, Journal of Cryptology.

[15]  Douglas R. Stinson,et al.  New Approaches to Designing Public Key Cryptosystems Using One-Way Functions and Trapdoors in Finite Groups , 2001, Journal of Cryptology.

[16]  Paul B. Garrett,et al.  Buildings and Classical Groups , 1997 .

[17]  Yixian Yang,et al.  All exceptional groups of lie type have minimal logarithmic signatures , 2014, Applicable Algebra in Engineering, Communication and Computing.

[18]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[19]  Ahmad Gholami,et al.  The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups , 2015, Cryptography and Communications.

[20]  M. I. Gonz Secret-and Public-key Cryptosystems from Group Factorizations , .

[21]  Jan De Beule,et al.  Partial ovoids and partial spreads in finite classical polar spaces , 2008 .

[22]  Tran van Trung,et al.  Pseudorandom number generators based on random covers for finite groups , 2012, Des. Codes Cryptogr..

[23]  Martin Rötteler,et al.  On Minimal Length Factorizations of Finite Groups , 2003, Exp. Math..

[24]  Tran van Trung,et al.  Public key cryptosystem MST3: cryptanalysis and realization , 2010, J. Math. Cryptol..

[25]  Nasir D. Memon,et al.  Algebraic properties of cryptosystem PGM , 1992, Journal of Cryptology.

[26]  Tran van Trung,et al.  On Minimal Logarithmic Signatures of Finite Groups , 2005, Exp. Math..

[27]  Petra E. Holmes On Minimal Factorisations of Sporadic Groups , 2004, Exp. Math..