Engineering Route Planning Algorithms

Algorithms for route planning in transportation networks have recently undergone a rapid development, leading to methods that are up to three million times faster than Dijkstra's algorithm. We give an overview of the techniques enabling this development and point out frontiers of ongoing research on more challenging variants of the problem that include dynamically changing networks, time-dependent routing, and flexible objective functions.

[1]  Lanny A. Yeske Student Research Projects , 1998 .

[2]  Dorothea Wagner,et al.  Partitioning graphs to speedup Dijkstra's algorithm , 2007, ACM J. Exp. Algorithmics.

[3]  A. Goldberg,et al.  TRANSIT: Ultrafast Shortest-Path Queries with Linear-Time Preprocessing , 2006 .

[4]  Matthias Müller-Hannemann,et al.  Finding All Attractive Train Connections by Multi-criteria Pareto Search , 2004, ATMOS.

[5]  Rolf H. Möhring,et al.  Acceleration of Shortest Path and Constrained Shortest Path Computation , 2005, WEA.

[6]  Haim Kaplan,et al.  Better Landmarks Within Reach , 2007, WEA.

[7]  Ulrich Meyer,et al.  Single-source shortest-paths on arbitrary directed graphs in linear average-case time , 2001, SODA '01.

[8]  Kurt Mehlhorn,et al.  Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings , 2008, ESA.

[9]  Ronald J. Gutman,et al.  Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks , 2004, ALENEX/ANALC.

[10]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 1999, JEAL.

[11]  Costas S. Iliopoulos,et al.  A New Efficient Algorithm for Computing the Longest Common Subsequence , 2007, AAIM.

[12]  Dorothea Wagner,et al.  14. Experimental Study on Speed-Up Techniques for Timetable Information Systems , 2007 .

[13]  Martin Holzer Engineering planar-separator and shortest-path algorithms , 2008 .

[14]  Peter Sanders,et al.  In Transit to Constant Time Shortest-Path Queries in Road Networks , 2007, ALENEX.

[15]  Frank Schulz,et al.  Timetable information and shortest paths , 2005 .

[16]  Daniel Delling,et al.  SHARC: Fast and robust unidirectional routing , 2008, JEAL.

[17]  Leo Kroon,et al.  Algorithmic Methods for Railway Optimization, International Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20-25, 2004, 4th International Workshop, ATMOS 2004, Bergen, Norway, September 16-17, 2004, Revised Selected Papers , 2007, ATMOS.

[18]  Christos D. Zaroliagis,et al.  Geometric containers for efficient shortest-path computation , 2005, JEAL.

[19]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[20]  Dorothea Wagner,et al.  Experimental study of speed up techniques for timetable information systems , 2011, Networks.

[21]  L. Volker Route Planning in Road Networks with Turn Costs , 2008 .

[22]  Giacomo Nannicini,et al.  Bidirectional Core-Based Routing in Dynamic Time-Dependent Road Networks , 2008, ISAAC.

[23]  Ulrich Lauther,et al.  An Experimental Evaluation of Point-To-Point Shortest Path Calculation on Road Networks with Precalculated Edge-Flags , 2006, The Shortest Path Problem.

[24]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[25]  Peter Sanders,et al.  Engineering Fast Route Planning Algorithms , 2007, WEA.

[26]  Rolf H. Möhring,et al.  Fast Point-to-Point Shortest Path Computations with Arc-Flags , 2006, The Shortest Path Problem.

[27]  David M. Mount,et al.  Algorithm Engineering and Experiments , 2002, Lecture Notes in Computer Science.

[28]  Klaus Jansen,et al.  Experimental and Efficient Algorithms , 2003, Lecture Notes in Computer Science.

[29]  Peter Sanders,et al.  Combining hierarchical and goal-directed speed-up techniques for dijkstra's algorithm , 2008, JEAL.

[30]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[31]  Andrew V. Goldberg,et al.  Computing Point-to-Point Shortest Paths from External Memory , 2005, ALENEX/ANALCO.

[32]  Peter Sanders,et al.  Goal-directed shortest-path queries using precomputed cluster distances , 2010, JEAL.

[33]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[34]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[35]  M. Jacob A personal communication , 1989 .

[36]  Dorothea Wagner,et al.  High-Performance Multi-Level Routing , 2006, The Shortest Path Problem.

[37]  Peter Sanders,et al.  Dynamic Highway-Node Routing , 2007, WEA.

[38]  Peter Sanders,et al.  Computing Many-to-Many Shortest Paths Using Highway Hierarchies , 2007, ALENEX.

[39]  Peter Sanders,et al.  Time Dependent Contraction Hierarchies -- Basic Algorithmic Ideas , 2008, ArXiv.

[40]  Christos D. Zaroliagis,et al.  Using Multi-level Graphs for Timetable Information in Railway Systems , 2002, ALENEX.

[41]  Yann Disser,et al.  Multi-criteria Shortest Paths in Time-Dependent Train Networks , 2008, WEA.

[42]  Rolf H. Möhring,et al.  Partitioning Graphs to Speed Up Dijkstra's Algorithm , 2005, WEA.

[43]  Peter Sanders,et al.  Fast Routing in Road Networks with Transit Nodes , 2007, Science.

[44]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003 .

[45]  Dorothea Wagner,et al.  Combining speed-up techniques for shortest-path computations , 2004, JEAL.

[46]  Haim Kaplan,et al.  Reach for A*: Shortest Path Algorithms with Preprocessing , 2006, The Shortest Path Problem.

[47]  Dominik Schultes,et al.  Route Planning in Road Networks , 2008 .

[48]  V. Rich Personal communication , 1989, Nature.

[49]  Peter Sanders,et al.  Highway Hierarchies Star , 2006, The Shortest Path Problem.

[50]  Frank Schulz,et al.  Using Multi-Level Graphs for Timetable Information , 2001 .

[51]  Christos D. Zaroliagis,et al.  Timetable Information: Models and Algorithms , 2004, ATMOS.

[52]  Brian C. Dean,et al.  Continuous-time dynamics shortest path algorithms , 1999 .

[53]  Peter Sanders,et al.  Robust, Almost Constant Time Shortest-Path Queries in Road Networks , 2006, The Shortest Path Problem.

[54]  Dorothea Wagner,et al.  Engineering Multi-Level Overlay Graphs for Shortest-Path Queries , 2006, ALENEX.

[55]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[56]  Madhav V. Marathe,et al.  Engineering Label-Constrained Shortest-Path Algorithms , 2008, The Shortest Path Problem.

[57]  Thomas Willhalm,et al.  Engineering shortest paths and layout algorithms for large graphs , 2005 .

[58]  Michael Hoffmann,et al.  Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings , 2007, ESA.

[59]  Daniel Delling,et al.  Time-Dependent SHARC-Routing , 2008, Algorithmica.

[60]  Giuseppe Cattaneo,et al.  Algorithm engineering , 1999, CSUR.

[61]  Matthias Müller-Hannemann,et al.  Improved Search for Night Train Connections , 2007, ATMOS.

[62]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[63]  Leo Liberti,et al.  Bidirectional A* Search for Time-Dependent Fast Paths , 2008, WEA.

[64]  Dorothea Wagner,et al.  Engineering multilevel overlay graphs for shortest-path queries , 2009, JEAL.

[65]  Mikkel Thorup,et al.  Integer priority queues with decrease key in constant time and the single source shortest paths problem , 2003, STOC '03.

[66]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[67]  S. Azuma,et al.  Map navigation software of the electro-multivision of the '91 Toyoto Soarer , 1991, Vehicle Navigation and Information Systems Conference, 1991.

[68]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[69]  Andrew V. Goldberg,et al.  Computing the shortest path: A search meets graph theory , 2005, SODA '05.

[70]  Yossi Azar,et al.  Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings , 2006, ESA.

[71]  D. Delling Design and Implementation of an Efficient Hierarchical Speed-up Technique for Computation of Exact Shortest Paths in Graphs , 2006 .

[72]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[73]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[74]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.

[75]  Robert L. Smith,et al.  Fastest Paths in Time-dependent Networks for Intelligent Vehicle-Highway Systems Application , 1993, J. Intell. Transp. Syst..

[76]  Christos D. Zaroliagis,et al.  Efficient models for timetable information in public transportation systems , 2008, JEAL.

[77]  Dorothea Wagner,et al.  Landmark-Based Routing in Dynamic Graphs , 2007, WEA.

[78]  Haim Kaplan,et al.  Reach for A*: Efficient Point-to-Point Shortest Path Algorithms , 2006, ALENEX.

[79]  Peter Sanders,et al.  Mobile Route Planning , 2008, ESA.