GA with a new multi-parent crossover for constrained optimization

Over the last two decades, many Genetic Algorithms have been introduced for solving Constrained Optimization Problems (COPs). Due to the variability of the characteristics in different COPs, none of these algorithms performs consistently over a range of problems. In this paper, we introduce a Genetic Algorithm with a new multi-parent crossover for solving a variety of COPs. The proposed algorithm also uses a randomized operator instead of mutation and maintains an archive of good solutions. The algorithm has been tested by solving the 36 test instances, introduced in the CEC2010 constrained optimization competition session. The results show that the proposed algorithm performs better than the state-of-the-art algorithms.

[1]  Ponnuthurai N. Suganthan,et al.  Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems , 2010, IEEE Congress on Evolutionary Computation.

[2]  Jani Rönkkönen ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .

[3]  Tapabrata Ray,et al.  Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[4]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[5]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[6]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[7]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[8]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[10]  Ruhul A. Sarker,et al.  Analyzing the Simple Ranking and Selection Process for Constrained Evolutionary Optimization , 2008, Journal of Computer Science and Technology.

[11]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[14]  David Abramson,et al.  A PARALLEL GENETIC ALGORITHM FOR SOLVING THE SCHOOL TIMETABLING PROBLEM , 1992 .

[15]  Mehmet Fatih Tasgetiren,et al.  An ensemble of differential evolution algorithms for constrained function optimization , 2010, IEEE Congress on Evolutionary Computation.

[16]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[17]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[18]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[19]  Zhigang Shang,et al.  Coevolutionary Comprehensive Learning Particle Swarm Optimizer , 2010, IEEE Congress on Evolutionary Computation.

[20]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[21]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[22]  Tetsuyuki Takahama,et al.  Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation , 2010, IEEE Congress on Evolutionary Computation.

[23]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[26]  Janez Brest,et al.  An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.

[27]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .