Optimizing MPI Runtime Parameter Settings by Using Machine Learning

Manually tuning MPI runtime parameters is a practice commonly employed to optimise MPI application performance on a specific architecture. However, the best setting for these parameters not only depends on the underlying system but also on the application itself and its input data. This paper introduces a novel approach based on machine learning techniques to estimate the values of MPI runtime parameters that tries to achieve optimal speedup for a target architecture and any unseen input program. The effectiveness of our optimization tool is evaluated against two benchmarks executed on a multi-core SMP machine.

[1]  Peter M. W. Knijnenburg,et al.  Iterative compilation in a non-linear optimisation space , 1998 .

[2]  Ian Witten,et al.  Data Mining , 2000 .

[3]  Sally A. McKee,et al.  An Approach to Performance Prediction for Parallel Applications , 2005, Euro-Par.

[4]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[5]  Hyun-Wook Jin,et al.  Designing an Efficient Kernel-Level and User-Level Hybrid Approach for MPI Intra-Node Communication on Multi-Core Systems , 2008, 2008 37th International Conference on Parallel Processing.

[6]  Michael F. P. O'Boyle,et al.  Proceedings of the 1998 Workshop on Profile and Feedback Directed Compilation (PFDC'98) , 1998 .

[7]  R. V. D. Wijngaart NAS Parallel Benchmarks Version 2.4 , 2022 .

[8]  Jack J. Dongarra,et al.  Decision Trees and MPI Collective Algorithm Selection Problem , 2007, Euro-Par.

[9]  Edgar Gabriel,et al.  A Tool for Optimizing Runtime Parameters of Open MPI , 2008, PVM/MPI.

[10]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[11]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[12]  Jack Dongarra,et al.  Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European PVM/MPI Users' Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings , 2008, PVM/MPI.

[13]  Xin Yuan,et al.  STAR-MPI: self tuned adaptive routines for MPI collective operations , 2006, ICS '06.