Optimizing MPI Runtime Parameter Settings by Using Machine Learning
暂无分享,去创建一个
Jie Wang | Thomas Fahringer | Simone Pellegrini | Hans Moritsch | T. Fahringer | H. Moritsch | Simone Pellegrini | Jie Wang
[1] Peter M. W. Knijnenburg,et al. Iterative compilation in a non-linear optimisation space , 1998 .
[2] Ian Witten,et al. Data Mining , 2000 .
[3] Sally A. McKee,et al. An Approach to Performance Prediction for Parallel Applications , 2005, Euro-Par.
[4] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[5] Hyun-Wook Jin,et al. Designing an Efficient Kernel-Level and User-Level Hybrid Approach for MPI Intra-Node Communication on Multi-Core Systems , 2008, 2008 37th International Conference on Parallel Processing.
[6] Michael F. P. O'Boyle,et al. Proceedings of the 1998 Workshop on Profile and Feedback Directed Compilation (PFDC'98) , 1998 .
[7] R. V. D. Wijngaart. NAS Parallel Benchmarks Version 2.4 , 2022 .
[8] Jack J. Dongarra,et al. Decision Trees and MPI Collective Algorithm Selection Problem , 2007, Euro-Par.
[9] Edgar Gabriel,et al. A Tool for Optimizing Runtime Parameters of Open MPI , 2008, PVM/MPI.
[10] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[11] Ian H. Witten,et al. Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .
[12] Jack Dongarra,et al. Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European PVM/MPI Users' Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings , 2008, PVM/MPI.
[13] Xin Yuan,et al. STAR-MPI: self tuned adaptive routines for MPI collective operations , 2006, ICS '06.