Analysis of Multivariate Encryption Schemes: Application to Dob

In this paper, we study the effect of two modifications to multivariate public key encryption schemes: internal perturbation (ip), and Q+. Focusing on the Dob encryption scheme, a construction utilising these modifications, we accurately predict the number of degree fall polynomials produced in a Gröbner basis attack, up to and including degree five. The predictions remain accurate even when fixing variables. Based on this new theory we design a novel attack on the Dob encryption scheme, which breaks Dob using the parameters suggested by its designers. While our work primarily focuses on the Dob encryption scheme, we also believe that the presented techniques will be of particular interest to the analysis of other big–field schemes.

[1]  Jintai Ding,et al.  Inoculating Multivariate Schemes Against Differential Attacks , 2006, Public Key Cryptography.

[2]  Tsuyoshi Takagi,et al.  The Secure Parameters and Efficient Decryption Algorithm for Multivariate Public Key Cryptosystem EFC , 2019, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  Bart Preneel,et al.  Extension Field Cancellation: A New Central Trapdoor for Multivariate Quadratic Systems , 2016, PQCrypto.

[4]  Jintai Ding,et al.  Improved Cryptanalysis of HFEv- via Projection , 2018, IACR Cryptol. ePrint Arch..

[5]  Jintai Ding,et al.  A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation , 2004, Public Key Cryptography.

[6]  Jacques Patarin,et al.  Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.

[7]  Jacques Stern,et al.  Cryptanalysis of HFE with Internal Perturbation , 2007, Public Key Cryptography.

[8]  Jean-Charles Faugère,et al.  Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F_2 with solutions in F_2 , 2002 .

[9]  Hideki Imai,et al.  Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.

[10]  Jacques Stern,et al.  Differential Cryptanalysis for Multivariate Schemes , 2005, EUROCRYPT.

[11]  Jintai Ding,et al.  Inverting HFE Systems Is Quasi-Polynomial for All Fields , 2011, CRYPTO.

[12]  Ryann Cartor,et al.  EFLASH: A New Multivariate Encryption Scheme , 2018, IACR Cryptol. ePrint Arch..

[13]  Bart Preneel,et al.  Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations , 2005, IACR Cryptol. ePrint Arch..

[14]  Daniel Apon,et al.  Combinatorial Rank Attacks Against the Rectangular Simple Matrix Encryption Scheme , 2020, PQCrypto.

[15]  Tsuyoshi Takagi,et al.  Multivariate Encryption Schemes Based on Polynomial Equations over Real Numbers , 2020, PQCrypto.

[16]  Daniel Smith-Tone,et al.  A Rank Attack Against Extension Field Cancellation , 2020, PQCrypto.

[17]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[18]  Carlos Cid,et al.  Cryptanalysis of the Multivariate Encryption Scheme EFLASH , 2020, IACR Cryptol. ePrint Arch..

[19]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[20]  Jacques Patarin,et al.  Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88 , 1995, CRYPTO.

[21]  Jintai Ding,et al.  Simple Matrix - A Multivariate Public Key Cryptosystem (MPKC) for Encryption , 2015, Finite Fields Their Appl..

[22]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[23]  Jacques Patarin,et al.  Two-Face: New Public Key Multivariate Schemes , 2018, IACR Cryptol. ePrint Arch..

[24]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[25]  Luk Bettale,et al.  Hybrid approach for solving multivariate systems over finite fields , 2009, J. Math. Cryptol..

[26]  Antoine Joux,et al.  Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.

[27]  Jintai Ding,et al.  Cryptanalysis of HFEv and Internal Perturbation of HFE , 2005, Public Key Cryptography.

[28]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.