Bridging the diversity gap: Analytical and study design considerations for improving the accuracy of trans-ancestry genetic prediction

[1]  Xihong Lin,et al.  A new method for multi-ancestry polygenic prediction improves performance across diverse populations , 2023, bioRxiv.

[2]  Jacob C. Ulirsch,et al.  FinnGen provides genetic insights from a well-phenotyped isolated population , 2023, Nature.

[3]  J. Flannick,et al.  A combined polygenic score of 21,293 rare and 22 common variants improves diabetes diagnosis based on hemoglobin A1C levels , 2022, Nature Genetics.

[4]  B. Vilhjálmsson,et al.  Polygenic scoring accuracy varies across the genetic ancestry continuum in all human populations , 2022, bioRxiv.

[5]  M. Inouye,et al.  Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals , 2022, Nature Communications.

[6]  Opeyemi S. Soremekun,et al.  Transferability of genetic risk scores in African populations , 2022, Nature Medicine.

[7]  S. Tishkoff,et al.  Importance of Including Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine. , 2022, Annual review of biomedical data science.

[8]  Alicia R. Martin,et al.  Leveraging fine-mapping and multi-population training data to improve cross-population polygenic risk scores , 2022, Nature Genetics.

[9]  Alicia R. Martin,et al.  Diversity in Genomic Studies: A Roadmap to Address the Imbalance , 2022, Nature Medicine.

[10]  E. Génin,et al.  Heritability: What's the point? What is it not for? A human genetics perspective , 2022, Genetica.

[11]  Christopher D. Brown,et al.  The power of genetic diversity in genome-wide association studies of lipids , 2021, Nature.

[12]  Max W. Y. Lam,et al.  Improving Polygenic Prediction in Ancestrally Diverse Populations , 2021, Nature Genetics.

[13]  G. Ginsburg,et al.  The International Hundred Thousand Plus Cohort Consortium: integrating large-scale cohorts to address global scientific challenges , 2020, The Lancet Digital Health.

[14]  H. Aburatani,et al.  Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease , 2020, Nature Genetics.

[15]  Kyle J. Gaulton,et al.  Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation , 2020, Nature Genetics.

[16]  L. O'Connor The distribution of common-variant effect sizes , 2020, Nature Genetics.

[17]  J. Witte,et al.  Inclusion of variants discovered from diverse populations improves polygenic risk score transferability , 2020, bioRxiv.

[18]  P. Visscher,et al.  Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations , 2020, Nature Communications.

[19]  Markus S. Schröder,et al.  The GenomeAsia 100K Project enables genetic discoveries across Asia , 2019, Nature.

[20]  Mary D. Fortune,et al.  Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa , 2019, Cell.

[21]  M. Feldman,et al.  Analysis of polygenic risk score usage and performance in diverse human populations , 2019, Nature Communications.

[22]  M. McCarthy,et al.  Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine , 2019, Endocrine reviews.

[23]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[24]  J. Pritchard,et al.  Variable prediction accuracy of polygenic scores within an ancestry group , 2019, bioRxiv.

[25]  Scott M. Williams,et al.  The Missing Diversity in Human Genetic Studies , 2019, Cell.

[26]  Alicia R. Martin,et al.  Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.

[27]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[28]  G. de los Campos,et al.  Modeling Heterogeneity in the Genetic Architecture of Ethnically Diverse Groups Using Random Effect Interaction Models , 2019, Genetics.

[29]  Brielin C. Brown,et al.  Estimating cross‐population genetic correlations of causal effect sizes , 2018, Genetic epidemiology.

[30]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[31]  Timothy Shin Heng Mak,et al.  Tutorial: a guide to performing polygenic risk score analyses , 2018, bioRxiv.

[32]  J. Blangero,et al.  Heritability and genetic associations of triglyceride and HDL-C levels using pedigree-based and empirical kinships , 2018, BMC Proceedings.

[33]  D. Curtis Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia , 2018, bioRxiv.

[34]  Po-Ru Loh,et al.  Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.

[35]  R. Mägi,et al.  Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution , 2017, Human molecular genetics.

[36]  Laura W. Harris,et al.  A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog , 2018, Genome Biology.

[37]  Christopher R. Gignoux,et al.  Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.

[38]  A. Choudhury,et al.  Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset , 2016, Genome biology and evolution.

[39]  S. Fullerton,et al.  Genomics is failing on diversity , 2016, Nature.

[40]  Brielin C. Brown,et al.  Transethnic genetic correlation estimates from summary statistics , 2016, bioRxiv.

[41]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[42]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[43]  M. McCarthy,et al.  Research Capacity: Enabling African Scientists to Engage Fully in the Genomic Revolution , 2014 .

[44]  Faisal M. Fadlelmola,et al.  Enabling Genomic Revolution in Africa , 2019, The Genetics of African Populations in Health and Disease.

[45]  L. Groop,et al.  Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study , 2011, Diabetologia.

[46]  Eleazar Eskin,et al.  Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. , 2011, American journal of human genetics.

[47]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[48]  J. Wall,et al.  Haplotype blocks and linkage disequilibrium in the human genome , 2003, Nature Reviews Genetics.

[49]  J. Clarke,et al.  Medicine , 1907, Bristol medico-chirurgical journal.

[50]  Dan J Stein,et al.  H3Africa: current perspectives , 2018 .