Ensemble Kalman Filter Data Assimilation for the Model for Prediction Across Scales (MPAS)

AbstractA global atmospheric analysis and forecast system is constructed based on the atmospheric component of the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new covariance models at different scales. Cycling experiments with the assimilation of real observations show that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution forecasts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial scale for skillful precipitation forecasts is evaluated over t...

[1]  Arthur A. Mirin,et al.  Exploring a Global Multiresolution Modeling Approach Using Aquaplanet Simulations , 2013 .

[2]  Luc Fillion,et al.  A Variable-Resolution Semi-Lagrangian Finite-Element Global Model of the Shallow-Water Equations , 1993 .

[3]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[4]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[5]  Yan Yang,et al.  The Geos Retrospective Data Assimilation System: The 6-Hour Lag Case , 2013 .

[6]  Saulo R. M. Barros,et al.  On vector field reconstructions for semi-Lagrangian transport methods on geodesic staggered grids , 2014, J. Comput. Phys..

[7]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[8]  Michael S. Fox-Rabinovitz,et al.  A variable‐resolution stretched‐grid general circulation model and data assimilation system with multiple areas of interest: Studying the anomalous regional climate events of 1998 , 2002 .

[9]  J. Kepert Covariance localisation and balance in an Ensemble Kalman Filter , 2009 .

[10]  E. Kalnay,et al.  Balance and Ensemble Kalman Filter Localization Techniques , 2011 .

[11]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[12]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[13]  Jens Schröter,et al.  Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic , 2004 .

[14]  Young-Joon Kim,et al.  Extension of an orographic‐drag parametrization scheme to incorporate orographic anisotropy and flow blocking , 2005 .

[15]  Mark Buehner,et al.  Implementation of Deterministic Weather Forecasting Systems Based on Ensemble–Variational Data Assimilation at Environment Canada. Part I: The Global System , 2015 .

[16]  N. Roberts,et al.  Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events , 2008 .

[17]  William C. Skamarock,et al.  Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..

[18]  Jeffrey L. Anderson Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation , 2012 .

[19]  Neill E. Bowler,et al.  Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NWP , 2015 .

[20]  L. Cucurull Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting , 2010 .

[21]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[22]  A. Monin,et al.  Basic laws of turbulent mixing in the surface layer of the atmosphere , 2009 .

[23]  Armin Iske,et al.  Hamburger Beiträge zur Angewandten Mathematik Kernel-Based Vector Field Reconstruction in Computational Fluid Dynamic Models , 2009 .

[24]  Stéphane Laroche,et al.  Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis , 1999 .

[25]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[26]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[27]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[28]  N. Roberts Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model , 2008 .

[29]  A. M. Clayton,et al.  On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering , 2004 .

[30]  Joseph B. Klemp,et al.  A Terrain-Following Coordinate with Smoothed Coordinate Surfaces , 2011 .

[31]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[32]  P. Houtekamer,et al.  Ensemble size, balance, and model-error representation in an ensemble Kalman filter , 2002 .

[33]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[34]  C. C. Pain,et al.  Ensemble data assimilation applied to an adaptive mesh ocean model , 2016 .

[35]  Chris Snyder,et al.  A Comparison of Model Error Representations in Mesoscale Ensemble Data Assimilation , 2015 .

[36]  Jeffrey L. Anderson Spatially and temporally varying adaptive covariance inflation for ensemble filters , 2009 .

[37]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[38]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[39]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[40]  Marion Mittermaier,et al.  A long‐term assessment of precipitation forecast skill using the Fractions Skill Score , 2013 .

[41]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[42]  Todd D. Ringler,et al.  A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations , 2008 .

[43]  Lili Lei,et al.  A Four-Dimensional Incremental Analysis Update for the Ensemble Kalman Filter , 2016 .

[44]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[45]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[46]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[47]  Jeffrey L. Anderson,et al.  An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .

[48]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[49]  Todd D. Ringler,et al.  Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations , 2011 .