Markov Chain Marginal Bootstrap

Markov chain marginal bootstrap (MCMB) is a new method for constructing confidence intervals or regions for maximum likelihood estimators of certain parametric models and for a wide class of M estimators of linear regression. The MCMB method distinguishes itself from the usual bootstrap methods in two important aspects: it involves solving only one-dimensional equations for parameters of any dimension and produces a Markov chain rather than a (conditionally) independent sequence. It is designed to alleviate computational burdens often associated with bootstrap in high-dimensional problems. The validity of MCMB is established through asymptotic analyses and illustrated with empirical and simulation studies for linear regression and generalized linear models.

[1]  J. Fox Bootstrapping Regression Models , 2002 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[3]  Joseph P. Romano,et al.  A Review of Bootstrap Confidence Intervals , 1988 .

[4]  R. Koenker Confidence Intervals for Regression Quantiles , 1994 .

[5]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[6]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[7]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[8]  J. Zidek,et al.  A bootstrap based on the estimating equations of the linear model , 1995 .

[9]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[10]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[11]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[12]  Z. Bai,et al.  Asymptotic distributions of the maximal depth estimators for regression and multivariate location , 1999 .

[13]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[14]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[15]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[16]  V. Yohai,et al.  ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .

[17]  Roger Koenker,et al.  Tests of linear hypotheses based on regression rank scores , 1993 .

[18]  C. Radhakrishna Rao,et al.  M-estimation of multivariate linear regression parameters under a convex discrepancy function , 1992 .

[19]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[20]  S. Lahiri Bootstrapping $M$-Estimators of a Multiple Linear Regression Parameter , 1992 .

[21]  J. Kalbfleisch,et al.  The estimating function bootstrap , 2000 .

[22]  S. Portnoy,et al.  Direct use of regression quantiles to construct confidence sets in linear models , 1996 .

[23]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[24]  Q. Shao,et al.  A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .

[25]  P. Hall,et al.  On the Distribution of a Studentized Quantile , 1988 .

[26]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[27]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[28]  Estimating Equations and the Bootstrap , 1997 .