Soliton-like Waves on dissipative Toda Lattices

Dissipative soliton-like waves in 1D Toda lattices generated by suitable energy supply from external sources have been studied. Using the general theory of canonical-dissipative systems we have constructed a special canonical-dissipative system whose solution starting from an arbitrarily initial condition decays to a solution of the standard, conservative Toda system. The energy of the final state may be prescribed beforehand. We have also studied the influence of noise and have calculated the distribution of probability density in phase space and the energy distribution. Other noncanonical models of energy input, including nonlinear nearest neighbor coupling and "Rayleigh" friction, have been analyzed. We have shown under what conditions the lattices can sustain the propagation of stable solitary waves and wave trains.

[1]  M. Velarde,et al.  Wall reflections of solitary waves in Marangoni-Bénard convection , 1993 .

[2]  Velarde,et al.  Interfacial Wave Motions Due to Marangoni Instability. , 1997, Journal of colloid and interface science.

[3]  M. Velarde,et al.  Oblique and head‐on collisions of solitary waves in Marangoni–Bénard convection , 1993 .

[4]  C. Christov,et al.  Dissipative solitons , 1995 .

[5]  M. Opper,et al.  Solitons in the statistical mechanics of the Toda lattice , 1981 .

[6]  S. Troshin,et al.  Different behaviour of the spin structure functions $g_1(x)$ and $h_1(x)$ at $x\to 0$ , 1997 .

[7]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[8]  Chu,et al.  Korteweg-de Vries soliton excitation in Bénard-Marangoni convection. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  W. Ebeling,et al.  Trapping and fusion of solitons in a nonuniform Toda lattice , 1988 .

[10]  M. Velarde,et al.  PULSES, FRONTS AND CHAOTIC WAVE TRAINS IN A ONE-DIMENSIONAL CHUA'S LATTICE , 1997 .

[11]  I. Gallimberti Discussion of the comments on « the mechanism of the long spark formation » , 1981 .

[12]  Morikazu Toda,et al.  The classical specific heat of the exponential lattice , 1983 .

[13]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .

[14]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[15]  M. Velarde,et al.  A three‐dimensional description of solitary waves and their interaction in Marangoni–Bénard layers , 1994 .

[16]  M. Velarde,et al.  Evidence for solitary wave behavior in Marangoni–Bénard convection , 1992 .

[17]  M. Velarde,et al.  Dissipative Korteweg–de Vries description of Marangoni–Bénard oscillatory convection , 1991 .

[18]  M. Velarde,et al.  Interfacial Wave Motions Due to Marangoni Instability: II. Three-Dimensional Characteristics of Surface Waves in Annular Containers☆ , 1999 .

[19]  Malomed Propagating solitons in damped ac-driven chains. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  Takuji Kawahara,et al.  Pulse interactions in an unstable dissipative‐dispersive nonlinear system , 1988 .

[21]  R. Graham,et al.  Path-integral methods in Nonequilibrium Thermodynamics and statistics , 1978 .

[22]  Werner Ebeling,et al.  Soliton – Assisted Activation Processes , 1991 .

[23]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Vladimir I. Nekorkin,et al.  SOLITARY WAVES, SOLITON BOUND STATES AND CHAOS IN A DISSIPATIVE KORTEWEG-DE VRIES EQUATION , 1994 .

[25]  M. Velarde,et al.  Cylindrical solitary waves and their interaction in Bénard-Marangoni layers , 1998 .

[26]  Werner Ebeling,et al.  Structural Stability of Stochastic Systems , 1981 .

[27]  L. Rayleigh,et al.  The theory of sound , 1894 .

[28]  Yu. S. Ryazantsev,et al.  Cnoidal Wave Trains and Solitary Waves in a Dissipation-Modified Korteweg—de Vries Equation , 1995 .