On-chip superconducting microwave circulator from synthetic rotation

We analyze the design of a potential replacement technology for the commercial ferrite circulators that are ubiquitous in contemporary quantum superconducting microwave experiments. The lossless, lumped element design is capable of being integrated on chip with other superconducting microwave devices, thus circumventing the many performance-limiting aspects of ferrite circulators. The design is based on the dynamic modulation of DC superconducting microwave quantum interference devices (SQUIDs) that function as nearly linear, tunable inductors. The connection to familiar ferrite-based circulators is a simple frame boost in the internal dynamics' equation of motion. In addition to the general, schematic analysis, we also give an overview of many considerations necessary to achieve a practical design with a tunable center frequency in the 4-8 GHz frequency band, a bandwidth of 240 MHz, reflections at the -20 dB level, and a maximum signal power of approximately order 100 microwave photons per inverse bandwidth.

[1]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[2]  S. Tanaka,et al.  Active circulators—The realization of circulators using transistors , 1965 .

[3]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[4]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[5]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[6]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[7]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[8]  L. Frunzio,et al.  Josephson directional amplifier for quantum measurement of superconducting circuits. , 2013, Physical review letters.

[9]  P. J. Allen The Turnstile Circulator , 1956 .

[10]  David P. DiVincenzo,et al.  Hall Effect Gyrators and Circulators , 2013, 1312.5190.

[11]  I. Siddiqi,et al.  Suppression of the radiative decay of atomic coherence in squeezed vacuum , 2013, 1301.6276.

[12]  B. Anderson,et al.  On reciprocity and time-variable networks , 1965 .

[13]  B. A. AULDj The Synthesis of Symmetrical Waveguide Circulators * , 1997 .

[14]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[15]  D. Pozar Microwave Engineering , 1990 .

[16]  R. Barends,et al.  Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line , 2013, 1308.1376.

[17]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[18]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[19]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[20]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[21]  A. Metelmann,et al.  Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering , 2015, 1502.07274.

[22]  John Clarke,et al.  Noiseless non-reciprocity in a parametric active device , 2010, 1010.1794.

[23]  B. Anderson,et al.  The Time-Variable Lattice and Nonreciprocal RLC Networks , 1966 .

[24]  Andrea Alù,et al.  Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops , 2014, Nature Physics.

[25]  C. E. Fay,et al.  Operation of the Ferrite Junction Circulator , 1965 .

[26]  C. Burroughs,et al.  Superconducting integrated circuit fabrication with low temperature ECR-based PECVD SiO/sub 2/ dielectric films , 1995, IEEE Transactions on Applied Superconductivity.

[27]  R. J. Schoelkopf,et al.  Wireless Josephson amplifier , 2014, 1404.4979.

[28]  Leonardo Ranzani,et al.  Graph-based analysis of nonreciprocity in coupled-mode systems , 2014, 1406.4922.

[29]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .

[30]  H. Carlin,et al.  Theoretical Limitations on the Broad-Band Matching of Arbitrary Impedances , 1961 .

[31]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[32]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[33]  Jr. P. Penfield Wave Representation of Amplifier Noise , 1962 .

[34]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[35]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[36]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[37]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.