Electroporation-induced transformation of intact cells of Clostridium perfringens

Electroporation-induced transformation of intact cells of Clostridium perfringens 3624A with plasmids pAMB1 and pHR106 resulted in 3.8 X 10(-5) and 4.2 X 10(-4) transformants per viable cell, respectively. With respect to shuttle plasmid pHR106, these values represent a greater than 100-fold increase in transformation frequency when compared with the values reported with polyethylene glycol-induced L-phase variants.

[1]  P. Hylemon,et al.  Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens , 1988, Applied and environmental microbiology.

[2]  J. Dubel,et al.  Transformation of Clostridium perfringens L forms with shuttle plasmid DNA , 1988, Applied and environmental microbiology.

[3]  B. Chassy,et al.  Transformation of Lactobacillus casei by electroporation , 1987 .

[4]  M. A. Klacik,et al.  Development of a cell wash buffer that minimizes nucleic acid loss from Clostridium perfringens 10543 A. , 1985, Canadian Journal of Microbiology (print).

[5]  M. Smith,et al.  Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization , 1984, Journal of bacteriology.

[6]  P. Leder,et al.  Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Blaschek,et al.  Transformation of Heat-Treated Clostridium acetobutylicum Protoplasts with pUB110 Plasmid DNA , 1984, Applied and environmental microbiology.

[8]  M. Yarus,et al.  Shuttle plasmids for Escherichia coli and Clostridium perfringens , 1984, Journal of bacteriology.

[9]  M. Yarus,et al.  Transformation of Clostridium perfringens , 1984, Journal of bacteriology.

[10]  M. A. Klacik,et al.  Role of DNase in recovery of plasmid DNA from Clostridium perfringens , 1984, Applied and environmental microbiology.

[11]  E. Neumann,et al.  Stochastic model for electric field-induced membrane pores. Electroporation. , 1984, Biophysical chemistry.

[12]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[13]  David T. Jones,et al.  Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA , 1983, Applied and environmental microbiology.

[14]  W. Förster,et al.  Microbiological implications of electric field effects VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses , 1983 .

[15]  H. Blaschek,et al.  Isolation of a plasmid responsible for caseinase activity in Clostridium perfringens ATCC 3626B , 1981, Journal of bacteriology.

[16]  S. T. Liu,et al.  Rapid procedure for detection and isolation of large and small plasmids , 1981, Journal of bacteriology.

[17]  K. R. Jones,et al.  Simple method for demonstrating small plasmid deoxyribonucleic acid molecules in oral streptococci , 1980, Applied and environmental microbiology.

[18]  M. Magot,et al.  Characterization and transferability of Clostridium perfringens plasmids. , 1977, Plasmid.

[19]  G. Dunny,et al.  Characterization of Three Plasmid Deoxyribonucleic Acid Molecules in a Strain of Streptococcus faecalis: Identification of a Plasmid Determining Erythromycin Resistance , 1974, Journal of bacteriology.

[20]  D. Clewell,et al.  Nature of Col E1 Plasmid Replication in Escherichia coli in the Presence of Chloramphenicol , 1972, Journal of bacteriology.