A generalized polynomial chaos based ensemble Kalman filter with high accuracy
暂无分享,去创建一个
Dongbin Xiu | Jia Li | D. Xiu | Jia Li
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[3] Stephen E. Cohn,et al. An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .
[4] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[5] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[6] R. Kalman,et al. New results in linear prediction and filtering theory Trans. AMSE , 1961 .
[7] Jeffrey L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .
[8] D. Pham. Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .
[9] Dongbin Xiu,et al. On numerical properties of the ensemble Kalman filter for data assimilation , 2008 .
[10] P. Houtekamer,et al. Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .
[11] S. Cohn,et al. An Introduction to Estimation Theory , 1997 .
[12] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[13] Ionel Michael Navon,et al. A Note on the Particle Filter with Posterior Gaussian Resampling , 2006 .
[14] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[15] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[16] Craig H. Bishop,et al. Adaptive sampling with the ensemble transform Kalman filter , 2001 .
[17] G. Evensen. Sampling strategies and square root analysis schemes for the EnKF , 2004 .
[18] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[19] M. Verlaan,et al. Nonlinearity in Data Assimilation Applications: A Practical Method for Analysis , 2001 .
[20] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[21] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[22] Viktor Winschel,et al. Estimation with Numerical Integration on Sparse Grids , 2006 .
[23] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[24] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[25] D. Nychka. Data Assimilation” , 2006 .
[26] G. Evensen,et al. An ensemble Kalman smoother for nonlinear dynamics , 2000 .
[27] Jeffrey K. Uhlmann,et al. Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.
[28] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[29] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[30] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[31] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[32] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[33] J. Whitaker,et al. Ensemble Data Assimilation without Perturbed Observations , 2002 .