Periodic motions of conservative systems with singular potentials

[1]  P. Rabinowitz A note on periodic solutions of prescribed energy for singular Hamiltonian systems , 1994 .

[2]  Kazunaga Tanaka A Prescribed Energy Problem for a Singular Hamiltonian System with a Weak Force , 1993 .

[3]  A. Ambrosetti,et al.  Addendum to Closed orbits of fixed energy for a class of N-body problems , 1992 .

[4]  A. Ambrosetti,et al.  Closed orbits of fixed energy for a class of N-body problems , 1992 .

[5]  A. Ambrosetti Critical points and nonlinear variational problems , 1992 .

[6]  A. Ambrosetti,et al.  Closed orbits of fixed energy for singular Hamiltonian systems , 1990 .

[7]  Michael Struwe,et al.  Existence of periodic solutions of Hamiltonian systems on almost every energy surface , 1990 .

[8]  P. Rabinowitz,et al.  A minimax method for a class of Hamiltonian systems with singular potentials , 1989 .

[9]  C. Viterbo Indice de Morse des points critiques obtenus par minimax , 1988 .

[10]  C. Viterbo A proof of Weinstein’s conjecture in ℝ 2n , 1987 .

[11]  E. Zehnder,et al.  Periodic solutions on hypersurfaces and a result by C. Viterbo , 1987 .

[12]  S. Solimini,et al.  Nontrivial solutions of operator equations and Morse indices of critical points of min-max type , 1986 .

[13]  V. Benci,et al.  Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems , 1984 .

[14]  K. Hayashi Periodic Solution of Classical Hamiltonian Systems , 1983 .

[15]  Vieri Benci,et al.  Critical point theorems for indefinite functionals , 1979 .

[16]  Paul H. Rabinowitz,et al.  Periodic solutions of a Hamiltonian system on a prescribed energy surface , 1979 .

[17]  Alan Weinstein,et al.  Periodic Orbits for Convex Hamiltonian Systems , 1978 .

[18]  H. Seifert Periodische Bewegungen mechanischer Systeme , 1948 .