Minimizing the Laplacian spectral radius of trees with given matching number

Let denote the set of trees on n vertices with fixed matching number β. In this article, we prove that if n = kβ +1, k ≥ 2, then the trees which minimize the Laplacian spectral radius over have maximum degree Δ =k, and determine the extremal trees for 1≤ β ≤4.

[1]  B. Bollobás,et al.  Maximal matchings in graphs with given minimal and maximal degrees , 1976 .

[2]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[3]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[4]  Xiao-Dong Zhang,et al.  Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees , 2005, Discret. Math..

[5]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[6]  Yaoping Hou,et al.  Bounds on the largest eigenvalues of trees with a given size of matching , 2002 .

[7]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[8]  Michael Doob,et al.  Spectra of graphs , 1980 .

[9]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[10]  Rong Luo,et al.  The spectral radius of triangle-free graphs , 2002, Australas. J Comb..

[11]  Irene Sciriha,et al.  Trees with maximum nullity , 2005 .

[12]  Ji-Ming Guo On the Laplacian spectral radius of a tree , 2003 .

[13]  R. Merris A note on Laplacian graph eigenvalues , 1998 .

[14]  Jinlong Shu,et al.  A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph , 2002 .

[15]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[18]  Yong-Liang Pan,et al.  Sharp upper bounds for the Laplacian graph eigenvalues , 2002 .

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.