Cross‐Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium‐Ion Batteries

[1]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[2]  E. Timofeeva,et al.  In Situ X-ray Absorption Spectroscopy Study of the Capacity Fading Mechanism in Hybrid Sn3O2(OH)2/Graphite Battery Anode Nanomaterials , 2015 .

[3]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[4]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[5]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[6]  D. Aurbach,et al.  Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides , 1998 .

[7]  Y. Gong,et al.  Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration , 2007 .

[8]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[9]  Federica Chiellini,et al.  Chitosan—A versatile semi-synthetic polymer in biomedical applications , 2011 .

[10]  Liquan Chen,et al.  Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries , 2001 .

[11]  Yunhui Huang,et al.  Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery , 2015 .

[12]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[13]  Seung M. Oh,et al.  A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries , 2013 .

[14]  Lili Chai,et al.  A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries , 2014 .

[15]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[16]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[17]  Jun Liu,et al.  In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities , 2010 .

[18]  Shota Hashimoto,et al.  Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[19]  Juyoung Kim,et al.  Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[20]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[21]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[22]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[23]  Peng-fei Shi,et al.  Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte , 2004 .

[24]  Cheng Wang,et al.  Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[25]  B. B. Hassine,et al.  [Dye molecules/copper(II)/macroporous glutaraldehyde‐chitosan] microspheres complex: Surface characterization, kinetic, and thermodynamic investigations , 2012 .

[26]  Byung Gon Kim,et al.  Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery , 2013, Proceedings of the National Academy of Sciences.

[27]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[28]  Gabriel M. Veith,et al.  Cu2Sb thin films as anode for Na-ion batteries , 2013 .

[29]  Shu-Lei Chou,et al.  Small things make a big difference: binder effects on the performance of Li and Na batteries. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[30]  S. Gopukumar,et al.  rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling , 2014 .

[31]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[32]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[33]  J. Goodenough,et al.  Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery , 2015 .

[34]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[35]  D. Mitlin,et al.  Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li , 2014 .

[36]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[37]  Luigi Petarca,et al.  Polyelectrolyte complexes obtained by radical polymerization in the presence of chitosan , 1996 .

[38]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[39]  Xiaobo Ji,et al.  Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. , 2014, ACS applied materials & interfaces.

[40]  L. Monconduit,et al.  The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries , 2015 .

[41]  Y. Kang,et al.  Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. , 2014, Chemical communications.

[42]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[43]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[44]  John B. Goodenough,et al.  Electrochemical energy storage in a sustainable modern society , 2014 .

[45]  Donghai Wang,et al.  Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐ion Batteries , 2014 .

[46]  K. Stevenson,et al.  Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions , 2012 .

[47]  Erik J. Berg,et al.  Understanding the Interaction of the Carbonates and Binder in Na-Ion Batteries: A Combined Bulk and Surface Study , 2015 .

[48]  Lin Gu,et al.  Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries , 2015 .

[49]  G. Roberts,et al.  Chitosan gels, 3. The formation of gels by reaction of chitosan with glutaraldehyde , 1989 .

[50]  Zhenan Bao,et al.  High‐Areal‐Capacity Silicon Electrodes with Low‐Cost Silicon Particles Based on Spatial Control of Self‐Healing Binder , 2015 .

[51]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[52]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[53]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[54]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[55]  Yu‐Guo Guo,et al.  Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage , 2013 .

[56]  C. B. Carter,et al.  Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony. , 2015, Nano letters.