Time-resolved high-speed camera observation of electrospray

A high-speed camera was implemented to visualize the time-resolved fine structure of electrospray of deionized water. This method provided useful visual information on how electrospray initiates, develops and produces water droplets of different sizes. The behavior of different spray mode and its characteristic time-scale were measured. The cone-jet mode subdivided into oscillating cone-jet, rotating cone-jet, stable cone-jet, and unstable cone-jet according to the motion and stability of cone-jet. The size of nozzle also influenced the spray mode. The stable cone-jet mode appeared over a wide range of voltage as the nozzle diameter increased. The hydrodynamic behavior of meniscus or cone-jet played a key role in determining the size of the droplets. Hydrodynamic force induced by vigorous lashing and swirling movement at the jet front was found to play a dominant role in the continuous formation of fine droplets in the cone-jet mode.

[1]  C. Enke,et al.  Practical implications of some recent studies in electrospray ionization fundamentals. , 2001, Mass spectrometry reviews.

[2]  H. Elghazaly,et al.  Analysis of the Instability of Evaporating Charged Liquid Drops , 1986, IEEE Transactions on Industry Applications.

[3]  E. Davis,et al.  The rayleigh limit of charge revisited: light scattering from exploding droplets , 1994 .

[4]  Eran Sher,et al.  Extinction of pool flames by means of a dc electric field , 1993 .

[5]  John Zeleny,et al.  Instability of Electrified Liquid Surfaces , 1917 .

[6]  M. Gamero-Castaño,et al.  On the current emitted by Taylor cone-jets of electrolytes in vacuo: Implications for liquid metal ion sources , 1998 .

[7]  Alfonso M. Gañán-Calvo,et al.  Current and droplet size in the electrospraying of liquids. Scaling laws , 1997 .

[8]  A. Bruins Mechanistic aspects of electrospray ionization , 1998 .

[9]  P. Baumgarten,et al.  Electrostatic spinning of acrylic microfibers , 1971 .

[10]  N. Kudo,et al.  Surface tension reduction of liquid by applied electric field using vibrating jet method , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[11]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[12]  J. M. López-Herrera,et al.  Coaxial jets generated from electrified Taylor cones. Scaling laws , 2003 .

[13]  R. J. Turnbull,et al.  Generation of charged drops of insulating liquids by electrostatic spraying , 1976 .

[14]  Richard C. Flagan,et al.  Droplet Evaporation and Discharge Dynamics in Electrospray Ionization , 2002 .

[15]  Jong‐Ho Kim,et al.  Electrospray with electrostatic precipitator enhances fine particles collection efficiency , 2010 .

[16]  J. Zeleny Electrical Discharges from Pointed Conductors , 1920 .

[17]  Katharine Smith,et al.  Voltage effects on the volumetric flow rate in cone-jet mode electrospraying , 2006 .

[18]  J. Stark,et al.  Pulsation modes and the effect of applied voltage on current and flow rate in nanoelectrospray. , 2006, Analytical chemistry.

[19]  A. Jaworek,et al.  Generation and characteristics of the precession mode of ehd spraying , 1996 .

[20]  M. Cloupeau,et al.  Electrostatic spraying of liquids: Main functioning modes , 1990 .

[21]  Arnold W. Doyle,et al.  Behavior of evaporating electrically charged droplets , 1964 .

[22]  C. Lee,et al.  Factors influencing liquid breakup in electrohydrodynamic atomization , 2004 .

[23]  John R. Albright,et al.  Mass dependence of the momentum-transfer distributions in pi+ p ---> p 8pi at 11.0 gev/c , 1974 .

[24]  M. Cloupeau,et al.  Electrostatic spraying of liquids in cone-jet mode , 1989 .

[25]  J. F. D. L. Mora,et al.  Charge and Size Distributions of Electrospray Drops , 1997 .

[26]  A. I. Grigor’ev,et al.  The semiphenomenological classification of the modes of electrostatic dispersion of liquids , 1995 .

[27]  Akos Vertes,et al.  Astable regime in electrosprays. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Alfonso M. Gañán-Calvo,et al.  Cone-Jet Analytical Extension of Taylor's Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying , 1997 .

[29]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[30]  P. Noymer,et al.  Stability and atomization characteristics of electrohydrodynamic jets in the cone-jet and multi-jet modes , 2000 .

[31]  D. J. Brunner,et al.  JET BREAK-UP IN ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE-JET MODE , 2000 .

[32]  G. Karwasz,et al.  Swarm experiment on ionized water clusters , 2001 .

[33]  P. Kebarle,et al.  Droplet Electrospray Mass Spectrometry , 1994 .

[34]  V. Drozin The electrical dispersion of liquids as aerosols , 1955 .

[35]  David Y. H. Pui,et al.  Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range , 1995 .

[36]  A. Gomez,et al.  Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-Jet Mode , 1996, Journal of colloid and interface science.

[37]  J. Latham,et al.  The instability of evaporating charged drops , 1967, Journal of Fluid Mechanics.

[38]  A. Jaworek,et al.  Studies of the corona discharge in ehd spraying , 1997 .

[39]  A. Bailey,et al.  ELECTROSTATIC SPRAYING OF LIQUIDS , 1988 .

[40]  A. Jaworek,et al.  Classification of the Modes of Ehd Spraying , 1999 .

[41]  A. Gomez,et al.  On the structure of an electrostatic spray of monodisperse droplets , 1994 .

[42]  A. T. Sobczyk,et al.  Electrospraying route to nanotechnology: An overview , 2008 .

[43]  J. P. Borra,et al.  INFLUENCE OF ELECTRIC FIELD PROFILE AND POLARITY ON THE MODE OF EHDA RELATED TO ELECTRIC DISCHARGE REGIMES , 1999 .