Temporal and spatial variations in upper atmospheric Mg

Long-term behavior of magnesium ions in the upper atmosphere has been observed at wavelengths near 2800 A using the Nimbus 7 solar backscattered ultraviolet (SBUV) instrument. Observations were made in the continuous spectral scan mode that operated approximately once a month from 1979 to 1986. Total column abundance of Mg+ near local noon is the quantity derived from the nadirviewing SBUV observations. Mg+ total column abundances vary as a function of magnetic activity, solar sunspot activity, season, dip latitude, and longitude, as the result of changes in chemistry and ion transport. Increased Mg+ column abundances are observed during periods of high magnetic activity at all latitudes. Total Mg+ column abundances are observed to increase with solar sunspot activity at low and middle latitudes. Seasonal variation in the midlatitude Mg+ column abundance is observed with a maximum near summer solstice. The total column abundances derived here are complementary to previous metallic ion studies in the upper E and F regions.

[1]  C. P. Pike,et al.  Simultaneous observations of neutral and ionic magnesium in the thermosphere , 1995 .

[2]  P. Bhartia,et al.  Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements. , 1995, Applied optics.

[3]  C. Barnet,et al.  HST spectroscopic observations of Jupiter after the collision of comet Shoemaker-Levy 9 , 1995, Science.

[4]  Edmond Murad,et al.  Mg+ and other metallic emissions observed in the thermosphere , 1994, Optics & Photonics.

[5]  G. Papen,et al.  Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies , 1993 .

[6]  C. Gardner,et al.  Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitudes , 1993 .

[7]  G. Crowley,et al.  Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm , 1989 .

[8]  J. Grebowsky,et al.  Another look at equatorial metallic ions in the F region , 1989 .

[9]  R. Mcpeters Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1979 through 1986 , 1989 .

[10]  J. Salah,et al.  Effects of geomagnetic activity in the winter thermosphere: 1. Magnetically undisturbed conditions , 1988 .

[11]  R. Cebula,et al.  Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide , 1988 .

[12]  Donald F. Heath,et al.  The Mg 280‐nm doublet as a monitor of changes in solar ultraviolet irradiance , 1986 .

[13]  T. Fuller‐Rowell,et al.  Modelling of thermospheric composition changes caused by a severe magnetic storm , 1985 .

[14]  S. Mende,et al.  Observations of E and F region Mg(+) from Spacelab 1 , 1985 .

[15]  J. Grebowsky,et al.  The source of midlatitude metallic ions at F-region altitudes , 1985 .

[16]  G. Anderson,et al.  Solar ultraviolet variation between 1977 and 1983 , 1984 .

[17]  J. Kasting,et al.  The zonally averaged circulation, temperature, and compositional structure of the lower thermosphere and variations with geomagnetic activity , 1984 .

[18]  P. Hays,et al.  Theoretical modeling of low‐latitude Mg+ , 1983 .

[19]  P. Hays,et al.  Mg+ morphology from visual airglow experiment observations , 1982 .

[20]  W. B. Hanson,et al.  The morphology of metallic ions in the upper atmosphere , 1980 .

[21]  J. Gérard,et al.  The morphology of equatorial Mg+ ion distribution deduced from 2800‐Å airglow observations , 1979 .

[22]  J. Grebowsky,et al.  Fe/+/ ions in the high latitude F-region , 1978 .

[23]  J. Gérard,et al.  The Mg II equatorial airglow altitude distribution , 1978 .

[24]  R. W. Nopper,et al.  Polar‐equatorial coupling during magnetically active periods , 1978 .

[25]  A. Hedin,et al.  Significance of large‐scale circulation in magnetic storm characteristics with application to AE‐C neutral composition data , 1977 .

[26]  Arlin J. Krueger,et al.  The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G , 1975 .

[27]  T. J. Keneshea,et al.  Numerical modelling of a metallic ion sporadic‐E layer , 1975 .

[28]  J. Gérard,et al.  Satellite observations of the equatorial Mg II dayglow intensity distribution , 1974 .

[29]  A. Aikin,et al.  Metallic ions in the equatorial ionosphere , 1973 .

[30]  R. Woodman Source and Identification of Heavy Ions in the Equatorial F Layer W. B. I-IANSON AND D. L. STERLING University o) Texas at Dallas, Dallas, Texas 75230 , 1972 .

[31]  James G. Anderson,et al.  Rocket investigation of the Mg I and Mg II dayglow , 1971 .

[32]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities , 1991 .

[33]  G. Anderson,et al.  Instrumental effects on a proposed Mg II index of solar activity , 1988 .

[34]  J. Gérard Satellite measurements of high‐altitude twilight Mg+ emission , 1976 .

[35]  R. Narcisi Mass Spectrometer Measurements in the Ionosphere , 1973 .