On sequential maximum likelihood estimation for exponential families of stochastic processes

On considere en particulier le cas d'observations stoppees lorsqu'une combinaison lineaire des statistiques canoniques atteint un niveau donne. On derive la transformee de Laplace de la statistique exhaustive et on demontre quelques resultats sur le comportement asymptotique de l'estimateur du maximum de vraisemblance

[1]  Helmut Pruscha Sequential Estimation Functions in Stochastic Population Processes , 1987 .

[2]  V. Stefanov Efficient sequential estimation in exponential-type processes , 1986 .

[3]  M. Musiela,et al.  Some parameter estimation problems for hypoelliptic homogeneous Gaussian diffusions , 1985 .

[4]  David R. Cox,et al.  The Effect of Sampling Rules on Likelihood Statistics , 1984 .

[5]  Optimal Sequential Estimation for Ergodic Birth‐Death Processes , 1984 .

[6]  O. Barndorff-Nielsen On conditionality resolution and the likelihood ratio for curved exponential models , 1984 .

[7]  V. Stefanov Efficient sequential estimation in finite-state Markov processes , 1984 .

[8]  R. Magiera Sequential estimation of the transition intensities in Markov processes with migration , 1984 .

[9]  Thomas Sellke,et al.  Sequential analysis of the proportional hazards model , 1983 .

[10]  Tze Leung Lai,et al.  Fixed Accuracy Estimation of an Autoregressive Parameter , 1983 .

[11]  On Maximum Likelihood Estimation in Randomly Stopped Diffusion-Type Processes , 1983 .

[12]  N. Becker,et al.  REMARKS ON OPTIMAL INFERENCE FOR MARKOV BRANCHING PROCESSES: A SEQUENTIAL APPROACH , 1983 .

[13]  P. Grambsch Sequential Sampling Based on the Observed Fisher Information to Guarantee The Accuracy of the Maximum Likelihood Estimator , 1983 .

[14]  Sequential statistical procedures for processes of the exponential class with independent increments , 1982 .

[15]  J. Franz Sequential estimation and asymptotic properties in birth-and-death processes , 1982 .

[16]  S. Trybuła Sequential estimation in finite-state Markov processes , 1982 .

[17]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[18]  P. Feigin Conditional Exponential Families and a Representation Theorem for Asympotic Inference , 1981 .

[19]  P. Brémaud Point Processes and Queues , 1981 .

[20]  R. Różański A modification of Sudakov's lemma and efficient sequential plans for the Ornstein-Uhlenbeck process , 1980 .

[21]  J. Franz,et al.  On sequential plans for the exponential class of processes , 1978 .

[22]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[23]  Do Sun Bai Efficient Estimation of Transition Probabilities in a Markov Chain , 1975 .

[24]  B. M. Brown,et al.  Inference for the diffusion branching process , 1975, Journal of Applied Probability.

[25]  C. Heyde,et al.  On Efficiency and Exponential Families in Stochastic Process Estimation , 1975 .

[26]  N. Keiding Maximum likelihood estimation in the birth-and-death process , 1974, Advances in Applied Probability.

[27]  O. Barndorff-Nielsen Information And Exponential Families , 1970 .

[28]  S. Trybuła Sequential estimation in processes with independent increments , 1968 .

[29]  H. Kaufman,et al.  Table of Laplace transforms , 1966 .

[30]  P. Moran,et al.  THE ESTIMATION OF THE PARAMETERS OF A BIRTH AND DEATH PROCESS. , 1953 .

[31]  P. A. P. Moran,et al.  Estimation Methods for Evolutive Processes , 1951 .