The rate of convergence for the cyclic projections algorithm II: Norms of nonlinear operators
暂无分享,去创建一个
[1] P. Mikusinski,et al. Introduction to Hilbert spaces with applications , 1990 .
[2] Heinz H. Bauschke,et al. On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .
[3] Sankatha Prasad Singh,et al. Approximation Theory, Wavelets and Applications , 1995 .
[4] K. Friedrichs. On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .
[5] Frank Deutsch,et al. A Dual Approach to Constrained Interpolationfrom a Convex Subset of Hilbert Space , 1997 .
[6] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[7] P. L. Combettes,et al. The Convex Feasibility Problem in Image Recovery , 1996 .
[8] Hein Hundal. An alternating projection that does not converge in norm , 2004 .
[9] Howard L. Weinert,et al. Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..
[10] J. Dixmier. Étude sur les variétés et les opérateurs de Julia, avec quelques applications , 1949 .
[11] F. Deutsch. The Angle Between Subspaces of a Hilbert Space , 1995 .
[12] Heinz H. Bauschke,et al. The method of cyclic projections for closed convex sets in Hilbert space , 1997 .
[13] Frank Deutsch,et al. The rate of convergence for the cyclic projections algorithm I: Angles between convex sets , 2006, J. Approx. Theory.
[14] Nachman Aronszajn. Introduction to the theory of Hilbert spaces , 1950 .
[15] Heinz H. Bauschke,et al. Projection algorithms and monotone operators , 1996 .
[16] Frank Deutsch,et al. The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets , 2008, J. Approx. Theory.
[17] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[18] F. Deutsch. Rate of Convergence of the Method of Alternating Projections , 1984 .