Noise Parameter Estimation for Poisson Corrupted Images Using Variance Stabilization Transforms

Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.

[1]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[2]  Vladimir V. Lukin,et al.  Segmentation-based method for blind evaluation of noise variance in images , 2008 .

[3]  J. Tukey,et al.  Transformations Related to the Angular and the Square Root , 1950 .

[4]  M. Bartlett The Square Root Transformation in Analysis of Variance , 1936 .

[5]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[6]  E. B. Wilson,et al.  The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Abbas El Gamal,et al.  Analysis of temporal noise in CMOS photodiode active pixel sensor , 2001, IEEE J. Solid State Circuits.

[8]  Elaine W. Jin Image quality quantification in camera phone applications , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[10]  Thierry Blu,et al.  Undecimated haar thresholding for poisson intensity estimation , 2010, 2010 IEEE International Conference on Image Processing.

[11]  W. B. Collis,et al.  Training Methods for Image Noise Level Estimation on Wavelet Components , 2004, EURASIP J. Adv. Signal Process..

[12]  Keigo Hirakawa,et al.  Approximations to camera sensor noise , 2013, Electronic Imaging.

[13]  Anastasios N. Venetsanopoulos,et al.  Generalized homomorphic and adaptive order statistic filters for the removal of impulsive and signal-dependent noise , 1987 .

[14]  P. Besbeas,et al.  A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts , 2004 .

[15]  S. Mallat A wavelet tour of signal processing , 1998 .

[16]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[17]  A. Foi,et al.  Noise variance estimation in nonlocal transform domain , 2009, 2009 International Workshop on Local and Non-Local Approximation in Image Processing.

[18]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[19]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[20]  Keigo Hirakawa Cross-talk explained , 2008, 2008 15th IEEE International Conference on Image Processing.

[21]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[22]  R. Zhang,et al.  The dominance of Poisson noise in color digital cameras , 2012, 2012 19th IEEE International Conference on Image Processing.

[23]  D. Pascale RGB coordinates of the Macbeth ColorChecker , 2006 .

[24]  Hugues Talbot,et al.  Efficient Poisson denoising for photography , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[25]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[27]  Stephen C. Cain,et al.  Projection-based image registration in the presence of fixed-pattern noise , 2001, IEEE Trans. Image Process..

[28]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[29]  Richard Szeliski,et al.  Automatic Estimation and Removal of Noise from a Single Image , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Patrick J. Wolfe,et al.  Skellam Shrinkage: Wavelet-Based Intensity Estimation for Inhomogeneous Poisson Data , 2009, IEEE Transactions on Information Theory.

[31]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[32]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  K. Egiazarian,et al.  Noise Measurement for Raw-Data of Digital Imaging Sensors by Automatic Segmentation of Nonuniform Targets , 2007, IEEE Sensors Journal.